Kriging::logMargPostFun
Description
Compute the Log-Marginal Posterior Density of a Kriging
Model Object for a given
Vector \(\boldsymbol{\theta}\) of Correlation Ranges
Usage
Python
# k = Kriging(...) k.logMargPostFun(theta, return_grad = False)
R
# k = Kriging(...) k$logMargPostFun(theta, return_grad = FALSE)
Matlab/Octave
% k = Kriging(...) k.logMargPostFun(theta, return_grad = false)
Arguments
Argument |
Description |
---|---|
|
Numeric vector of correlation range parameters at which the function is to be evaluated. |
|
Logical. Should the function return the gradient (w.r.t |
Details
The log-marginal posterior density relates to the jointly robust prior \(\pi_{\texttt{JR}}(\boldsymbol{\theta},\, \sigma^2, \, \boldsymbol{\beta}) \propto \pi(\boldsymbol{\theta}) \, \sigma^{-2}\). The marginal (or integrated) posterior is the function \(\boldsymbol{\theta}\) obtained by marginalizing out the GP variance \(\sigma^2\) and the vector \(\boldsymbol{\beta}\) of trend coefficients. Due to the form of the prior, the marginalization can be done on the likelihood \(p_{\texttt{marg}}(\boldsymbol{\theta}\,\vert \,\mathbf{y}) \propto \pi(\boldsymbol{\theta}) \times L_{\texttt{marg}}(\boldsymbol{\theta};\,\mathbf{y})\).
Value
The value of the log-marginal posterior density \(\log
p_{\texttt{marg}}(\boldsymbol{\theta} \,|\, \mathbf{y})\). By
maximizing this function we should get the estimate of
\(\boldsymbol{\theta}\) obtained when using objective = "LMP"
in the
fit.Kriging
method.
Examples
f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)
k <- Kriging(y, X, "matern3_2", objective="LMP")
print(k)
lmp <- function(theta) k$logMargPostFun(theta)$logMargPost
t <- seq(from = 0.01, to = 2, length.out = 101)
plot(t, lmp(t), type = "l")
abline(v = k$theta(), col = "blue")
Results
* data: 10x[0.0455565,0.940467] -> 10x[0.194057,1.00912]
* trend constant (est.): 0.388566
* variance (est.): 0.158896
* covariance:
* kernel: matern3_2
* range (est.): 0.313364
* fit:
* objective: LMP
* optim: BFGS