Usage
libKriging may be used through:
direct C++ access
Python wrapper
R wrapper
Octave wrapper
Matlab wrapper
The basic usage is almost the same whatever lang.:
# input design
X = ...
# output results
y = ...
# load/import/... libKriging
...
# build & fit Kriging model
k = Kriging(y, X, "gauss")
# display model
print(k)
# setup another (dense) input sample
x = ...
# use kriging model to predict at x
p = k.predict(x, ...)
# and/or use kriging model to simulate at x
s = k.simulate(nsim = 10, seed = 123, x)
Basic demo
Sample the objective function
\[
f: x \rightarrow 1 - \frac 1 2 \left( {\frac {sin(12 x)} {1 + x} + 2 cos(7 x) x ^ 5 + 0.7} \right)
\]
at \(X = \{0.0, 0.25, 0.5, 0.75, 1.0\}\), then predict and simulate in \([0,1]\).
This code, for Python, R or Matlab/Octave should return for both Python: , R:
or Matlab/Octave :


SciKit-Learn wrapping
Implement SciKit-Learn BaseEstimator to plot gpr noisy targets (SciKit-Learn example: ), using libKriging:
from sklearn.base import BaseEstimator
import pylibkriging as lk
import numpy as np
class KrigingEstimator(BaseEstimator):
def __init__(self, kernel="matern3_2", regmodel = "constant", normalize = False, optim = "BFGS", objective = "LL", noise = None, parameters = None):
self.kernel = kernel
self.regmodel = regmodel
self.normalize = normalize
self.optim = optim
self.objective = objective
self.noise = noise
self.parameters = parameters
if self.parameters is None:
self.parameters = {}
if self.noise is None:
self.kriging = lk.Kriging(self.kernel)
elif type(self.noise) is float: # homoskedastic user-defined "noise"
self.kriging = lk.NoiseKriging(self.kernel)
else:
raise Exception("noise type not supported:", type(self.noise))
def fit(self, X, y):
if self.noise is None:
self.kriging.fit(y, X, self.regmodel, self.normalize, self.optim, self.objective, self.parameters)
elif type(self.noise) is float: # homoskedastic user-defined "noise"
self.kriging.fit(y, np.repeat(self.noise, y.size), X, self.regmodel, self.normalize, self.optim, self.objective, self.parameters)
else:
raise Exception("noise type not supported:", type(self.noise))
def predict(self, X, return_std=False, return_cov=False):
return self.kriging.predict(X, return_std, return_cov, False)
def sample_y(self, X, n_samples = 1, random_state = 0):
return self.kriging.simulate(nsim = n_samples, seed = random_state, x = X)
def log_marginal_likelihood(self, theta=None, eval_gradient=False):
if theta is None:
return self.kriging.logLikeliHood()
else:
return self.kriging.logLikeliHoodFun(theta, eval_gradient)