Kriging::logLikelihood
Description
Get the Maximized Log-Likelihood of a Kriging
Model Object
Usage
Python
# k = Kriging(...) k.logLikelihood()
R
# k = Kriging(...) k$logLikelihood()
Matlab/Octave
% k = Kriging(...) k.logLikelihood()
Details
See logLikelihoodFun.Kriging
for more
details on the profile log-likelihood function used in the
maximization.
Value
The value of the maximized profile log-likelihood \(\ell_{\texttt{prof}}(\widehat{\boldsymbol{\theta}})\). This is also the value \(\ell(\widehat{\boldsymbol{\theta}},\, \widehat{\sigma}^2,\, \widehat{\boldsymbol{\beta}})\) of the maximized log-likelihood.
Examples
f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)
k <- Kriging(y, X, kernel = "matern3_2", objective="LL")
print(k)
k$logLikelihood()
Results
* data: 10x[0.0455565,0.940467] -> 10x[0.194057,1.00912]
* trend constant (est.): 0.433954
* variance (est.): 0.0873685
* covariance:
* kernel: matern3_2
* range (est.): 0.240585
* fit:
* objective: LL
* optim: BFGS
[1] 8.62771