NuggetKriging::simulate
Description
Simulation from a NuggetKriging
model object.
Usage
Python
# k = NuggetKriging(...) k.simulate(nsim = 1, seed = 123, x)
R
# k = NuggetKriging(...) k$simulate(nsim = 1, seed = 123, x)
Matlab/Octave
% k = NuggetKriging(...) k.simulate(nsim = 1, seed = 123, x)
Arguments
Argument |
Description |
---|---|
|
Number of simulations to perform. |
|
Random seed used. |
|
Points in model input space where to simulate. |
|
Set to FALSE if wish to remove the nugget in the simulation. |
|
Set to TRUE if wish to use |
Details
This method draws paths of the stochastic process at new input points conditional on the values at the input points used in the fit.
Value
A matrix with nrow(x)
rows and nsim
columns containing the simulated paths at the inputs points
given in x
.
Examples
f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 *rnorm(nrow(X))
points(X, y, col = "blue")
k <- NuggetKriging(y, X, kernel = "matern3_2")
x <- seq(from = 0, to = 1, length.out = 101)
s <- k$simulate(nsim = 3, x = x)
lines(x, s[ , 1], col = "blue")
lines(x, s[ , 2], col = "blue")
lines(x, s[ , 3], col = "blue")
Results