NuggetKriging::predict
Description
Predict from a NuggetKriging
Model Object
Usage
Python
# k = NuggetKriging(...) k.predict(x, return_stdev = True, return_cov = False, return_deriv = False)
R
# k = NuggetKriging(...) k$predict(x, return_stdev = TRUE, return_cov = FALSE, return_deriv = FALSE)
Matlab/Octave
% k = NuggetKriging(...) k.predict(x, return_stdev = true, return_cov = false, return_deriv = false)
Arguments
Argument |
Description |
---|---|
|
Input points where the prediction must be computed. |
|
|
|
|
|
|
Details
Given \(n^\star\) “new” input points \(\mathbf{x}^\star_{j}\), the method
compute the expectation, the standard deviation and (optionally) the covariance
of the “new” observations \(y(\mathbf{x}^\star_j)\) of the
stochastic process, conditional on the \(n\) values \(y(\mathbf{x}_i)\) at
the input points \(\mathbf{x}_i\) as used when fitting the model. The
\(n^\star\) input vectors (with length \(d\)) are given as the rows of a
\(\mathbf{X}^\star\) corresponding to x
.
The computation of these quantities is often called Universal Kriging see here for more details.
Value
A list containing the element mean
and possibly return_stdev
and
return_cov
.
The expectation in
mean
is the estimate of the vector \(\textsf{E}[\mathbf{y}^\star \, \vert \,\mathbf{y}]\) with length \(n^\star\) where \(\mathbf{y}^\star\) and \(\mathbf{y}\) are the random vectors corresponding to the observation and the “new” input points. Similarly the conditional standard deviation inreturn_stdev
is a vector with length \(n^\star\) and the conditional covariance inreturn_cov
is a \(n^\star \times n^\star\) matrix.The (optional) derivatives are two \(n^\star \times d\) matrices
pred_mean_deriv
andpred_sdtdev_deriv
with their row \(j\) containing the vector of derivatives w.r.t. to the new input point \(\mathbf{x}^\star\) evaluated at \(\mathbf{x}^\star = \mathbf{x}^\star_j\). So the row \(j\) ofpred_mean_deriv
contains the derivative \(\partial_{\mathbf{x}^\star} \mathbb{E}[y(\mathbf{x}^\star) \, \vert \,\mathbf{y}]\). evaluated at \(\mathbf{x}^\star = \mathbf{x}^\star_j\).
Note that for a NuggetKriging
object if it happens that the new
input \(\mathbf{x}^\star\) is exactly equal to one of the inputs
\(\mathbf{x}_i\) then the corresponding prediction will be equal to the
corresponding observed output \(y_i\). So the prediction is
discontinuous at the observations.
Examples
f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 * rnorm(nrow(X))
points(X, y, col = "blue", pch = 16)
k <- NuggetKriging(y, X, "matern3_2")
x <- sort(c(X,seq(from = 0, to = 1, length.out = 101))) # include design points to see interpolation
p <- k$predict(x)
lines(x, p$mean, col = "blue")
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)), border = NA, col = rgb(0, 0, 1, 0.2))
Results