NuggetKriging::logLikelihood
Description
Get the Maximized Log-Likelihood of a NuggetKriging
Model Object
Usage
Python
# k = NuggetKriging(...) k.logLikelihood()
R
k$logLikelihood()
Matlab/Octave
% k = NuggetKriging(...) k.logLikelihood()
Details
See logLikelihoodFun.NuggetKriging
for more details on the corresponding profile log-likelihood function.
Value
The value of the maximized profile log-likelihood \(\ell_{\texttt{prof}}(\widehat{\boldsymbol{\theta}},\,\widehat{\alpha})\) where \(\alpha:= \sigma^2 / (\sigma^2 + \nu^2)\) is the ratio of the variances \(\sigma^2\) for the GP and \(\sigma^2 + \nu^2\) for the GP \(+\) nugget. This is also the value \(\ell(\widehat{\boldsymbol{\theta}},\, \widehat{\alpha},\, \widehat{\sigma}^2,\, \widehat{\boldsymbol{\beta}})\) or \(\ell(\widehat{\boldsymbol{\theta}},\, \widehat{\sigma}^2,\, \widehat{\tau}^2, \, \widehat{\boldsymbol{\beta}})\) of the maximized log-likelihood.
Examples
f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 * rnorm(nrow(X))
k <- NuggetKriging(y, X, kernel = "matern3_2", objective="LL")
print(k)
k$logLikelihood()
Results
* data: 10x[0.0455565,0.940467] -> 10x[0.149491,0.940566]
* trend constant (est.): 0.488156
* variance (est.): 0.078856
* covariance:
* kernel: matern3_2
* range (est.): 0.274956
* nugget (est.): 0.00347513
* fit:
* objective: LL
* optim: BFGS
[1] 4.95114