NoiseKriging::fit
Description
Fit a NoiseKriging
Model Object with given Observations
Usage
Python
# k = NoiseKriging(kernel=...) k.fit(y, noise, X, regmodel = "constant", normalize = False, optim = "BFGS", objective = "LL", parameters = None)
R
# k = NoiseKriging(kernel=...) k$fit(y, noise, X, regmodel = "constant", normalize = FALSE, optim = "BFGS", objective = "LL", parameters = NULL)
Matlab/Octave
% k = NoiseKriging(kernel=...) k.fit(y, noise, X, regmodel = "constant", normalize = false, optim = "BFGS", objective = "LL", parameters = [])
Arguments
Argument |
Description |
---|---|
|
Numeric vector of response values. |
|
Numeric vector of response variances. |
|
Numeric matrix of input design. |
|
Universal NoiseKriging linear trend: |
|
Logical. If |
|
Character giving the Optimization method used to fit hyper-parameters. Possible values are: |
|
Character giving the objective function to optimize. Possible values are: |
|
Initial values for the hyper-parameters. When provided this must be named list with elements |
|
Character defining the covariance model: |
Details
The hyper-parameters (variance and vector of correlation ranges) are
estimated thanks to the optimization of a criterion given by
objective
, using the method given in optim
. For now only the
maximum-likelihood estimation is allowed. See this section
for more details on the maximum-likelihood estimation.
Examples
f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 * rnorm(nrow(X)) # add noise dep. on X
k <- NoiseKriging("matern3_2")
print("before fit")
print(k)
k$fit(y,noise=(X/10)^2,X)
print("after fit")
print(k)
Results
[1] "before fit"
* covariance:
* kernel: matern3_2
[1] "after fit"
* data: 10x[0.0455565,0.940467] -> 10x[0.152144,0.957381]
* noise: 10x[2.07539e-05,0.00884479]
* trend constant (est.): 0.487335
* variance (est.): 0.0635381
* covariance:
* kernel: matern3_2
* range (est.): 0.211413
* fit:
* objective: LL
* optim: BFGS