

libKriging

libKriging is a C++ library for Kriging/Gaussian process regression.

Main features of libKriging are:

	
	Standard implementation of most common kriging:
	
	ordinary/universal kriging

	nugget (homoskedastic) or noise (heteroskedastic)

	optimization of hyper-parameters (range, nugget, variance, …) based on log-likelihood, leave-one-out, log-marginal-posterior

	(pre-)normalization of conditional data

	
	Port from and comparison/testing with some standard kriging libraries:
	
	https://CRAN.R-project.org/package=DiceKriging

	https://CRAN.R-project.org/package=RobustGaSP

	https://github.com/stk-kriging

	
	Compatibility with commons OS/arch:
	
	Windows

	Linux

	OSX (intel & ARM)

	
	(Almost) full wrapper availables for:
	
	Python: https://pypi.org/project/pylibkriging/

	R: https://github.com/libKriging/rlibkriging

	Octave

	Matlab

Check out the Usage section for further information, and how to install the project.

Note

This project is under active development.

Contents

	Installation

	Usage

	API

	Models description

	References

Footnotes

Installation

libKriging may be installed directly from:

	Python, from PyPI:

pip3 install pylibkriging

	R

	from CRAN:

install.packages('rlibkriging')

	from GitHub (dev version):

devtools::install_github('libKriging/rlibkriging')

	Octave/Matlab, download and uncompress the archive for your system from libKriging latest release https://github.com/libKriging/libKriging/releases/latest, then:

addpath("mLibKriging")

Footnotes

Usage

libKriging may be used through:

	direct C++ access

	Python wrapper

	R wrapper

	Octave wrapper

	Matlab wrapper

The basic usage is almost the same whatever lang.:

input design
X = ...
output results
y = ...

load/import/... libKriging
...
build & fit Kriging model
k = Kriging(y, X, "gauss")
display model
print(k)

setup another (dense) input sample
x = ...

use kriging model to predict at x
p = k.predict(x, ...)

and/or use kriging model to simulate at x
s = k.simulate(nsim = 10, seed = 123, x)

Basic demo

Sample the objective function

\[
f: x \rightarrow 1 - \frac 1 2 \left({\frac {sin(12 x)} {1 + x} + 2 cos(7 x) x ^ 5 + 0.7} \right)
\]

at \(X = \{0.0, 0.25, 0.5, 0.75, 1.0\}\), then predict and simulate in \([0,1]\).

This code, for Python, R or Matlab/Octave should return for both Python: [image: Python][#1], R: [image: R][#2] or Matlab/Octave :

[image: predict]
[image: simulate]

SciKit-Learn wrapping

Implement SciKit-Learn BaseEstimator to plot gpr noisy targets (SciKit-Learn example: [image: plot gpr noisy targets][#3]), using libKriging:

from sklearn.base import BaseEstimator
import pylibkriging as lk
import numpy as np

class KrigingEstimator(BaseEstimator):
 def __init__(self, kernel="matern3_2", regmodel = "constant", normalize = False, optim = "BFGS", objective = "LL", noise = None, parameters = None):
 self.kernel = kernel
 self.regmodel = regmodel
 self.normalize = normalize
 self.optim = optim
 self.objective = objective
 self.noise = noise
 self.parameters = parameters
 if self.parameters is None:
 self.parameters = {}
 if self.noise is None:
 self.kriging = lk.Kriging(self.kernel)
 elif type(self.noise) is float: # homoskedastic user-defined "noise"
 self.kriging = lk.NoiseKriging(self.kernel)
 else:
 raise Exception("noise type not supported:", type(self.noise))

 def fit(self, X, y):
 if self.noise is None:
 self.kriging.fit(y, X, self.regmodel, self.normalize, self.optim, self.objective, self.parameters)
 elif type(self.noise) is float: # homoskedastic user-defined "noise"
 self.kriging.fit(y, np.repeat(self.noise, y.size), X, self.regmodel, self.normalize, self.optim, self.objective, self.parameters)
 else:
 raise Exception("noise type not supported:", type(self.noise))

 def predict(self, X, return_std=False, return_cov=False):
 return self.kriging.predict(X, return_std, return_cov, False)

 def sample_y(self, X, n_samples = 1, random_state = 0):
 return self.kriging.simulate(nsim = n_samples, seed = random_state, x = X)

 def log_marginal_likelihood(self, theta=None, eval_gradient=False):
 if theta is None:
 return self.kriging.logLikeliHood()
 else:
 return self.kriging.logLikeliHoodFun(theta, eval_gradient)

Footnotes

[#1]
https://colab.research.google.com/github/libKriging/readthedocs/blob/master/examples/py-demo.ipynb

[#2]
https://colab.research.google.com/github/libKriging/readthedocs/blob/master/examples/r-demo.ipynb

[#3]
https://colab.research.google.com/github/libKriging/readthedocs/blob/master/examples/plot_gpr_noisy_targets.ipynb

API

Following API doc supports:

	Python wrapper

	R wrapper

	Octave wrapper

	Matlab wrapper

Python/R/Matlab/Octave syntaxes are almost identical, just diverging through some basic language elements:

	Python

	R

	Matlab/Octave

	a = b

	a <- b

	a = b

	True

	TRUE

	true

	False

	FALSE

	false

	None

	NULL

	[]

	a.b()

	a$b()

	a.b()

Contructors

	Kriging

	Kriging::update

	Kriging::copy

	Kriging::save & Kriging::load

	NuggetKriging

	NuggetKriging::update

	NuggetKriging::copy

	NuggetKriging::save & NuggetKriging::load

	NoiseKriging

	NoiseKriging::update

	NoiseKriging::copy

	NoiseKriging::save & NoiseKriging::load

Fit objective

	Kriging::fit

	Kriging::logLikelihood

	Kriging::logLikelihoodFun

	Kriging::leaveOneOut

	Kriging::leaveOneOutFun

	Kriging::logMargPost

	Kriging::logMargPostFun

	NuggetKriging::fit

	NuggetKriging::logLikelihood

	NuggetKriging::logLikelihoodFun

	NuggetKriging::logMargPost

	NuggetKriging::logMargPostFun

	NoiseKriging::fit

	NoiseKriging::logLikelihood

	NoiseKriging::logLikelihoodFun

Prediction and simulation

	Kriging::predict

	Kriging::simulate

	NuggetKriging::predict

	NuggetKriging::simulate

	NoiseKriging::predict

	NoiseKriging::simulate

Footnotes

Kriging

Description

Create a Kriging Object representing a Trend \(+\) GP Model

Usage

Just build the model:

Kriging(kernel)
later, call fit(y,X,...)

or, build and fit at the same time:

Kriging(
 y,
 X,
 kernel,
 regmodel = "constant",
 normalize = FALSE,
 optim = "BFGS",
 objective = "LL",
 parameters = NULL
)

Arguments

	Argument

	Description

	y

	Numeric vector of response values.

	X

	Numeric matrix of input design.

	kernel

	Character defining the covariance model: "gauss" , "exp" , "matern3_2" , "matern5_2".

	regmodel

	Universal Kriging linear trend.

	normalize

	Logical. If TRUE both the input matrix X and the response y in normalized to take values in the interval \([0, 1]\) .

	optim

	Character giving the Optimization method used to fit hyper-parameters. Possible values are: "BFGS" , "Newton" and "none" , the later simply keeping the values given in parameters . The method "BFGS" uses the gradient of the objective. The method "Newton" uses both the gradient and the Hessian of the objective.

	objective

	Character giving the objective function to optimize. Possible values are: "LL" for the Log-Likelihood, "LOO" for the Leave-One-Out sum of squares and "LMP" for the Log-Marginal Posterior.

	parameters

	Initial values for the hyper-parameters. When provided this must be named list with elements "sigma2" and "theta" containing the initial value(s) for the variance and for the range parameters. If theta is a matrix with more than one row, each row is used as a starting point for optimization.

Details

The hyper-parameters (variance and vector of correlation ranges)
are estimated thanks to the optimization of a criterion given by
objective , using the method given in optim .

Value

An object "Kriging" . Should be used
with its predict , simulate , update
methods.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)
fit and print
k <- Kriging(y, X, kernel = "matern3_2")
k

x <- as.matrix(seq(from = 0, to = 1, length.out = 101))
p <- k$predict(x = x, stdev = TRUE, cov = FALSE)

plot(f)
points(X, y)
lines(x, p$mean, col = "blue")
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)),
border = NA, col = rgb(0, 0, 1, 0.2))

s <- k$simulate(nsim = 10, seed = 123, x = x)

matlines(x, s, col = rgb(0, 0, 1, 0.2), type = "l", lty = 1)

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.194057,1.00912]
* trend constant (est.): 0.433954
* variance (est.): 0.0873685
* covariance:
 * kernel: matern3_2
 * range (est.): 0.240585
 * fit:
 * objective: LL
 * optim: BFGS

[image:]

Footnotes

Kriging::update

Description

Update a Kriging model object with new points

Usage

	Python

k = Kriging(...)
k.update(newy, newX)

	R

k = Kriging(...)
k$update(newy, newX)

	Matlab/Octave

% k = Kriging(...)
k.update(newy, newX)

Arguments

	Argument

	Description

	newy

	Numeric vector of new responses (output).

	newX

	Numeric matrix of new input points.

Examples

f <- function(x) 1- 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x)*x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)
points(X, y, col = "blue")

k <- Kriging(y, X, "matern3_2")

x <- seq(from = 0, to = 1, length.out = 101)
p <- k$predict(x)
lines(x, p$mean, col = "blue")
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)), border = NA, col = rgb(0, 0, 1, 0.2))

newX <- as.matrix(runif(3))
newy <- f(newX)
points(newX, newy, col = "red")

change the content of the object 'k'
k$update(newy, newX)

x <- seq(from = 0, to = 1, length.out = 101)
p2 <- k$predict(x)
lines(x, p2$mean, col = "red")
polygon(c(x, rev(x)), c(p2$mean - 2 * p2$stdev, rev(p2$mean + 2 * p2$stdev)), border = NA, col = rgb(1, 0, 0, 0.2))

Results

[image:]

Footnotes

Kriging::copy

Description

Duplicate a Kriging Model

Usage

	Python

k = Kriging(...)
k2 = k.copy()

	R

k = Kriging(...)
k2 = k$copy()

	Matlab/Octave

% k = Kriging(...)
k2 = k.copy()

Value

The copy of object.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)

k <- Kriging(y, X, kernel = "matern3_2")
k
k$copy()

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.194057,1.00912]
* trend constant (est.): 0.433954
* variance (est.): 0.0873685
* covariance:
 * kernel: matern3_2
 * range (est.): 0.240585
 * fit:
 * objective: LL
 * optim: BFGS
* data: 10x[0.0455565,0.940467] -> 10x[0.194057,1.00912]
* trend constant (est.): 0.433954
* variance (est.): 0.0873685
* covariance:
 * kernel: matern3_2
 * range (est.): 0.240585
 * fit:
 * objective: LL
 * optim: BFGS

[image:]

Footnotes

Kriging::save & Kriging::load

Description

Save/Load a Kriging Model

Usage

	Python

k = Kriging(...)
k.save("k.h5")
k2 = load("k.h5")

	R

k = Kriging(...)
k$save("k.h5")
k2 = load("k.h5")

	Matlab/Octave

% k = Kriging(...)
k.save("k.h5")
k2 = load("k.h5")

Value

The loaded object.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)

k <- Kriging(y, X, kernel = "matern3_2")
k
k$save("k.h5")
load("k.h5")

Results

[image:]

Footnotes

NuggetKriging

Description

Create an object "NuggetKriging" using
the libKriging library.

Usage

Just build the model:

NuggetKriging(kernel)
later, call fit(y,X,...)

or, build and fit at the same time:

NuggetKriging(
 y,
 X,
 kernel,
 regmodel = "constant",
 normalize = FALSE,
 optim = "BFGS",
 objective = "LL",
 parameters = NULL
)

Arguments

	Argument

	Description

	y

	Numeric vector of response values.

	X

	Numeric matrix of input design.

	kernel

	Character defining the covariance model: "gauss" , "exp" , "matern3_2" , "matern5_2".

	regmodel

	Universal NuggetKriging linear trend.

	normalize

	Logical. If TRUE both the input matrix X and the response y in normalized to take values in the interval \([0, 1]\) .

	optim

	Character giving the Optimization method used to fit hyper-parameters. Possible values are: "BFGS" and "none" , the later simply keeping the values given in parameters . The method "BFGS" uses the gradient of the objective.

	objective

	Character giving the objective function to optimize. Possible values are: "LL" for the Log-Likelihood and "LMP" for the Log-Marginal Posterior.

	parameters

	Initial values for the hyper-parameters. When provided this must be named list with some elements "sigma2", "theta", "nugget" containing the initial value(s) for the variance, range and nugget parameters. If theta is a matrix with more than one row, each row is used as a starting point for optimization.

Details

The hyper-parameters (variance, nugget and vector of correlation ranges)
are estimated thanks to the optimization of a criterion given by
objective , using the method given in optim .

Value

An object "NuggetKriging" . Should be used
with its predict , simulate , update
methods.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 * rnorm(nrow(X))
fit and print
k <- NuggetKriging(y, X, kernel = "matern3_2")
k

x <- sort(c(X,as.matrix(seq(from = 0, to = 1, length.out = 101))))
p <- k$predict(x = x, stdev = TRUE, cov = FALSE)

plot(f)
points(X, y)
lines(x, p$mean, col = "blue")
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)),
border = NA, col = rgb(0, 0, 1, 0.2))

s <- k$simulate(nsim = 10, seed = 123, x = x)

matlines(x, s, col = rgb(0, 0, 1, 0.2), type = "l", lty = 1)

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.149491,0.940566]
* trend constant (est.): 0.488124
* variance (est.): 0.0788813
* covariance:
 * kernel: matern3_2
 * range (est.): 0.275004
 * nugget (est.): 0.00347449
 * fit:
 * objective: LL
 * optim: BFGS

[image:]

Footnotes

NuggetKriging::update

Description

Update a NuggetKriging model object with new points

Usage

	Python

k = NuggetKriging(...)
k.update(newy, newX)

	R

k = NuggetKriging(...)
k$update(newy, newX)

	Matlab/Octave

% k = NuggetKriging(...)
k.update(newy, newX)

Arguments

	Argument

	Description

	newy

	Numeric vector of new responses (output).

	newX

	Numeric matrix of new input points.

Examples

f <- function(x) 1- 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x)*x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 * rnorm(nrow(X))
points(X, y, col = "blue")

k <- NuggetKriging(y, X, "matern3_2")

x <- sort(c(X,seq(from = 0, to = 1, length.out = 101))) # include design points to see interpolation
p <- k$predict(x)
lines(x, p$mean, col = "blue")
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)), border = NA, col = rgb(0, 0, 1, 0.2))

newX <- as.matrix(runif(3))
newy <- f(newX) + 0.1 * rnorm(nrow(newX))
points(newX, newy, col = "red")

change the content of the object 'k'
k$update(newy, newX)

x <- sort(c(X,newX,seq(from = 0, to = 1, length.out = 101))) # include design points to see interpolation
p2 <- k$predict(x)
lines(x, p2$mean, col = "red")
polygon(c(x, rev(x)), c(p2$mean - 2 * p2$stdev, rev(p2$mean + 2 * p2$stdev)), border = NA, col = rgb(1, 0, 0, 0.2))

Results

[image:]

Footnotes

NuggetKriging::copy

Description

Duplicate a NuggetKriging Model

Usage

	Python

k = NuggetKriging(...)
k2 = k.copy()

	R

k = NuggetKriging(...)
k2 = k$copy()

	Matlab/Octave

% k = NuggetKriging(...)
k2 = k.copy()

Value

The copy of object.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 * rnorm(nrow(X))

k <- NuggetKriging(y, X, kernel = "matern3_2")
k
k$copy()

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.149491,0.940566]
* trend constant (est.): 0.488124
* variance (est.): 0.0788813
* covariance:
 * kernel: matern3_2
 * range (est.): 0.275004
 * nugget (est.): 0.00347449
 * fit:
 * objective: LL
 * optim: BFGS
* data: 10x[0.0455565,0.940467] -> 10x[0.149491,0.940566]
* trend constant (est.): 0.488124
* variance (est.): 0.0788813
* covariance:
 * kernel: matern3_2
 * range (est.): 0.275004
 * nugget (est.): 0.00347449
 * fit:
 * objective: LL
 * optim: BFGS

[image:]

Footnotes

NuggetKriging::save & NuggetKriging::load

Description

Save/Load a NuggetKriging Model

Usage

	Python

k = NuggetKriging(...)
k.save("k.h5")
k2 = load("k.h5")

	R

k = NuggetKriging(...)
k$save("k.h5")
k2 = load("k.h5")

	Matlab/Octave

% k = NuggetKriging(...)
k.save("k.h5")
k2 = load("k.h5")

Value

The loaded object.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 * rnorm(nrow(X))

k <- NuggetKriging(y, X, kernel = "matern3_2")
k
k$save("k.h5")
load("k.h5")

Results

[image:]

Footnotes

NoiseKriging

Description

Create an object "NoiseKriging" using
the libKriging library.

Usage

Just build the model:

NoiseKriging(kernel)
later, call fit(y,X,...)

or, build and fit at the same time:

NoiseKriging(
 y,
 noise,
 X,
 kernel,
 regmodel = "constant",
 normalize = FALSE,
 optim = "BFGS",
 objective = "LL",
 parameters = NULL
)

Arguments

	Argument

	Description

	y

	Numeric vector of response values.

	noise

	Numeric vector of response variances.

	X

	Numeric matrix of input design.

	kernel

	Character defining the covariance model: "gauss" , "exp" , "matern3_2" , "matern5_2".

	regmodel

	Universal NoiseKriging linear trend.

	normalize

	Logical. If TRUE both the input matrix X and the response y in normalized to take values in the interval \([0, 1]\) .

	optim

	Character giving the Optimization method used to fit hyper-parameters. Possible values are: "BFGS" and "none" , the later simply keeping the values given in parameters . The method "BFGS" uses the gradient of the objective.

	objective

	Character giving the objective function to optimize. Possible values are: "LL" for the Log-Likelihood.

	parameters

	Initial values for the hyper-parameters. When provided this must be named list with elements "sigma2" and "theta" containing the initial value(s) for the variance and for the range parameters. If theta is a matrix with more than one row, each row is used as a starting point for optimization.

Details

The hyper-parameters (variance and vector of correlation ranges)
are estimated thanks to the optimization of a criterion given by
objective , using the method given in optim .

Value

An object "NoiseKriging" . Should be used
with its predict , simulate , update
methods.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 * rnorm(nrow(X)) # add noise dep. on X
fit and print
k <- NoiseKriging(y, noise=(X/10)^2, X, kernel = "matern3_2")
k

x <- as.matrix(seq(from = 0, to = 1, length.out = 101))
p <- k$predict(x = x, stdev = TRUE, cov = FALSE)

plot(f)
points(X, y)
lines(x, p$mean, col = "blue")
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)),
border = NA, col = rgb(0, 0, 1, 0.2))

s <- k$simulate(nsim = 10, seed = 123, x = x)

matlines(x, s, col = rgb(0, 0, 1, 0.2), type = "l", lty = 1)

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.152144,0.957381]
* trend constant (est.): 0.487335
* variance (est.): 0.0635381
* covariance:
 * kernel: matern3_2
 * range (est.): 0.211413
 * noise: 0.000827008, 0.00621425, 0.00167262, 0.0077972, 0.00884479, 2.07539e-05, 0.00278895, 0.00796412, 0.00304081, 0.00208497
 * fit:
 * objective: LL
 * optim: BFGS

[image:]

Footnotes

NoiseKriging::update

Description

Update a NoiseKriging model object with new points

Usage

	Python

k = NoiseKriging(...)
k.update(newy, newnoise, newX)

	R

k = NoiseKriging(...)
k$update(newy, newnoise, newX)

	Matlab/Octave

% k = NoiseKriging(...)
k.update(newy, newnoise, newX)

Arguments

	Argument

	Description

	newy

	Numeric vector of new responses (output).

	newnoise

	Numeric vector of new noise variances (output).

	newX

	Numeric matrix of new input points.

Examples

f <- function(x) 1- 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x)*x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 * rnorm(nrow(X))
points(X, y, col = "blue")

k <- NoiseKriging(y, (X/10)^2, X, "matern3_2")

x <- seq(from = 0, to = 1, length.out = 101)
p <- k$predict(x)
lines(x, p$mean, col = "blue")
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)), border = NA, col = rgb(0, 0, 1, 0.2))

newX <- as.matrix(runif(3))
newy <- f(newX) + 0.1 * rnorm(nrow(newX))
points(newX, newy, col = "red")

change the content of the object 'k'
k$update(newy, rep(0.1^2,3), newX)

x <- seq(from = 0, to = 1, length.out = 101)
p2 <- k$predict(x)
lines(x, p2$mean, col = "red")
polygon(c(x, rev(x)), c(p2$mean - 2 * p2$stdev, rev(p2$mean + 2 * p2$stdev)), border = NA, col = rgb(1, 0, 0, 0.2))

Results

[image:]

Footnotes

NoiseKriging::copy

Description

Duplicate a NoiseKriging Model

Usage

	Python

k = NoiseKriging(...)
k2 = k.copy()

	R

k = NoiseKriging(...)
k2 = k$copy()

	Matlab/Octave

% k = NoiseKriging(...)
k2 = k.copy()

Value

The copy of object.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 * rnorm(nrow(X)) # add noise dep. on X

k <- NoiseKriging(y, noise=(X/10)^2, X, kernel = "matern3_2")
k
k$copy()

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.152144,0.957381]
* trend constant (est.): 0.487335
* variance (est.): 0.0635381
* covariance:
 * kernel: matern3_2
 * range (est.): 0.211413
 * noise: 0.000827008, 0.00621425, 0.00167262, 0.0077972, 0.00884479, 2.07539e-05, 0.00278895, 0.00796412, 0.00304081, 0.00208497
 * fit:
 * objective: LL
 * optim: BFGS
* data: 10x[0.0455565,0.940467] -> 10x[0.152144,0.957381]
* trend constant (est.): 0.487335
* variance (est.): 0.0635381
* covariance:
 * kernel: matern3_2
 * range (est.): 0.211413
 * noise: 0.000827008, 0.00621425, 0.00167262, 0.0077972, 0.00884479, 2.07539e-05, 0.00278895, 0.00796412, 0.00304081, 0.00208497
 * fit:
 * objective: LL
 * optim: BFGS

[image:]

Footnotes

NoiseKriging::save & NoiseKriging::load

Description

Save/Load a NoiseKriging Model

Usage

	Python

k = NoiseKriging(...)
k.save("k.h5")
k2 = load("k.h5")

	R

k = NoiseKriging(...)
k$save("k.h5")
k2 = load("k.h5")

	Matlab/Octave

% k = NoiseKriging(...)
k.save("k.h5")
k2 = load("k.h5")

Value

The loaded object.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 * rnorm(nrow(X)) # add noise dep. on X

k <- NoiseKriging(y, noise=(X/10)^2, X, kernel = "matern3_2")
k
k$save("k.h5")
load("k.h5")

Results

[image:]

Footnotes

Kriging::fit

Description

Fit a Kriging Object using Given Observations

Usage

	Python

k = Kriging(kernel=...)
k.fit(y, X,
 regmodel = "constant",
 normalize = False,
 optim = "BFGS",
 objective = "LL",
 parameters = None)

	R

k = Kriging(kernel=...)
k$fit(y, X,
 regmodel = "constant",
 normalize = FALSE,
 optim = "BFGS",
 objective = "LL",
 parameters = NULL)

	Matlab/Octave

% k = Kriging(kernel=...)
k.fit(y, X,
 regmodel = "constant",
 normalize = false,
 optim = "BFGS",
 objective = "LL",
 parameters = [])

Arguments

	Argument

	Description

	y

	Numeric vector of response values.

	X

	Numeric matrix of input design.

	regmodel

	Universal Kriging linear trend.

	normalize

	Logical. If TRUE both the input matrix X and the response y in normalized to take values in the interval \([0, 1]\) .

	optim

	Character giving the Optimization method used to fit hyper-parameters. Possible values are: "BFGS" , "Newton" and "none" , the later simply keeping the values given in parameters . The method "BFGS" uses the gradient of the objective. The method "Newton" uses both the gradient and the Hessian of the objective.

	objective

	Character giving the objective function to optimize. Possible values are: "LL" for the Log-Likelihood, "LOO" for the Leave-One-Out sum of squares and "LMP" for the Log-Marginal Posterior.

	parameters

	Initial values for the hyper-parameters. When provided this must be named list with elements "sigma2" and "theta" containing the initial value(s) for the variance and for the range parameters. If theta is a matrix with more than one row, each row is used as a starting point for optimization.

Details

The hyper-parameters (variance and vector of correlation ranges)
are estimated thanks to the optimization of a criterion given by
objective , using the method given in optim .

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)

k <- Kriging("matern3_2")
print("before fit")
print(k)

k$fit(y,X)
print("after fit")
print(k)

Results

[1] "before fit"
* covariance:
 * kernel: matern3_2
[1] "after fit"
* data: 10x[0.0455565,0.940467] -> 10x[0.194057,1.00912]
* trend constant (est.): 0.433954
* variance (est.): 0.0873685
* covariance:
 * kernel: matern3_2
 * range (est.): 0.240585
 * fit:
 * objective: LL
 * optim: BFGS

[image:]

Footnotes

Kriging::logLikelihood

Description

Get the Maximized Log-Likelihood of a Kriging Model Object

Usage

	Python

k = Kriging(...)
k.logLikelihood()

	R

k = Kriging(...)
k$logLikelihood()

	Matlab/Octave

% k = Kriging(...)
k.logLikelihood()

Details

See logLikelihoodFun.Kriging for more
details on the profile log-likelihood function used in the
maximization.

Value

The value of the maximized profile log-likelihood
\(\ell_{\texttt{prof}}(\widehat{\boldsymbol{\theta}})\). This is also
the value \(\ell(\widehat{\boldsymbol{\theta}},\, \widehat{\sigma}^2,\,
\widehat{\boldsymbol{\beta}})\) of the maximized log-likelihood.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)

k <- Kriging(y, X, kernel = "matern3_2", objective="LL")
print(k)

k$logLikelihood()

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.194057,1.00912]
* trend constant (est.): 0.433954
* variance (est.): 0.0873685
* covariance:
 * kernel: matern3_2
 * range (est.): 0.240585
 * fit:
 * objective: LL
 * optim: BFGS
[1] 8.62771

[image:]

Reference

	Code: https://github.com/libKriging/libKriging/blob/master/src/lib/Kriging.cpp#L94

Footnotes

Kriging::logLikelihoodFun

Description

Compute the Profile Log-Likelihood of a Kriging Model Object for a
given Vector \(\boldsymbol{\theta}\) of Correlation Ranges

Usage

	Python

k = Kriging(...)
k.logLikelihoodFun(theta)

	R

k = Kriging(...)
k$logLikelihoodFun(theta)

	Matlab/Octave

% k = Kriging(...)
k.logLikelihoodFun(theta)

Arguments

	Argument

	Description

	theta

	A numeric vector of (positive) range parameters at which the profile log-likelihood will be evaluated.

	grad

	Logical. Should the function return the gradient?

	hess

	Logical. Should the function return Hessian?

Details

The profile log-likelihood \(\ell_{\texttt{prof}}(\boldsymbol{\theta})\)
is obtained from the log-likelihood function
\(\ell(\boldsymbol{\theta},\, \sigma^2, \, \boldsymbol{\beta})\) by
replacing the GP variance \(\sigma^2\) and the vector
\(\boldsymbol{\beta}\) of trend coefficients by their ML estimates
\(\widehat{\sigma}^2\) and \(\widehat{\boldsymbol{\beta}}\) which are
obtained by Generalized Least Squares. See here for more
details.

Value

The value of the profile log-likelihood
\(\ell_{\texttt{prof}}(\boldsymbol{\theta})\) for the given vector
\(\boldsymbol{\theta}\) of correlation ranges.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)

k <- Kriging(y, X, kernel = "matern3_2")
print(k)

ll <- function(theta) k$logLikelihoodFun(theta)$logLikelihood

t <- seq(from = 0.001, to = 2, length.out = 101)
plot(t, ll(t), type = 'l')
abline(v = k$theta(), col = "blue")

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.194057,1.00912]
* trend constant (est.): 0.433954
* variance (est.): 0.0873685
* covariance:
 * kernel: matern3_2
 * range (est.): 0.240585
 * fit:
 * objective: LL
 * optim: BFGS

[image:]

Footnotes

Kriging::leaveOneOut

Description

Get the Minimized Leave-One-Out Sum of Squares of a Kriging Model

Usage

	Python

k = Kriging(...)
k.leaveOneOut()

	R

k = Kriging(...)
k$leaveOneOut()

	Matlab/Octave

% k = Kriging(...)
k.leaveOneOut()

Value

The minimized Leave-One-Out (LOO) sum of squares
\(\texttt{SSE}_{\texttt{LOO}}\), corresponding to the estimated value
\(\widehat{\theta}\) of the vector of correlation ranges. See
leaveOneOutFun.Kriging for more details.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)

k <- Kriging(y, X, kernel = "matern3_2", objective="LOO")
print(k)

k$leaveOneOut()

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.194057,1.00912]
* trend constant (est.): 0.406331
* variance (est.): 0.0471509
* covariance:
 * kernel: matern3_2
 * range (est.): 0.284722
 * fit:
 * objective: LOO
 * optim: BFGS
[1] 0.003159176

[image:]

Reference

	Code: https://github.com/libKriging/libKriging/blob/master/src/lib/Kriging.cpp#L350

Footnotes

Kriging::leaveOneOutFun

Description

Compute the Leave-One-Out (LOO) Sum of Squares of Errors
for a Kriging Object and a Vector \(\boldsymbol{\theta}\)
of Correlation Ranges

Usage

	Python

k = Kriging(...)
k.logMargPostFun(theta, grad = FALSE)

	R

k = Kriging(...)
k$logMargPostFun(theta, grad = FALSE)

	Matlab/Octave

% k = Kriging(...)
k.logMargPostFun(theta, grad = FALSE)

Arguments

	Argument

	Description

	theta

	A numeric vector of range parameters at which the LOO sum of squares will be evaluated.

	grad

	Logical. Should the gradient (w.r.t. theta) be returned?

Details

The Leave-One-Out (LOO) sum of squares is defined by
\(\texttt{SS}_{\texttt{LOO}}(\boldsymbol{\theta}) := \sum_{i=1}^n
\{y_i - \widehat{y}_{i\vert -i}\}^2\) where \(\widehat{y}_{i\vert -i}\)
denotes the prediction of \(y_i\) based on the observations \(y_j\) with
\(j \neq i\). The vector \(\widehat{\mathbf{y}}_{\texttt{LOO}}\) of LOO
predictions is computed efficiently, see here for details.

Value

The value \(\texttt{SSE}_{\texttt{LOO}}(\boldsymbol{\theta})\) of the
Leave-One-Out Sum of Squares for the given vector
\(\boldsymbol{\theta}\) of correlation ranges.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)

k <- Kriging(y, X, kernel = "matern3_2", objective = "LOO", optim="BFGS")
print(k)

loo <- function(theta) k$leaveOneOutFun(theta)$leaveOneOut
t <- seq(from = 0.001, to = 2, length.out = 101)
plot(t, loo(t), type = "l")
abline(v = k$theta(), col = "blue")

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.194057,1.00912]
* trend constant (est.): 0.406331
* variance (est.): 0.0471509
* covariance:
 * kernel: matern3_2
 * range (est.): 0.284722
 * fit:
 * objective: LOO
 * optim: BFGS

[image:]

Footnotes

Kriging::logMargPost

Description

Get the Maximized Log-Marginal Posterior Density of a Kriging Model

Usage

	Python

k = Kriging(...)
k.logMargPost()

	R

k = Kriging(...)
k$logMargPost()

	Matlab/Octave

% k = Kriging(...)
k.logMargPost()

Details

Using the jointly robust prior
\(\pi_{\texttt{JR}}(\boldsymbol{\theta},\, \sigma^2, \,
\boldsymbol{\beta})\) the marginal or integrated posterior is the
function of \(\boldsymbol{\theta}\) obtained from the posterior density
by marginalizing out the GP variance \(\sigma^2\) and the vector
\(\boldsymbol{\beta}\) of trend coefficients. See
logMargPostFun.Kriging for the
log-marginal posterior density. By maximizing this function
w.r.t. \(\boldsymbol{\theta}\) we get estimated correlation ranges which
are warranted to be postitive and finite \(0 < \theta_k < \infty\).

Value

The maximal value of the log-marginal posterior density, corresponding
to the estimated value of the vector \(\boldsymbol{\theta}\) of
correlation ranges.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)

k <- Kriging(y, X, kernel = "matern3_2", objective="LMP")
print(k)

k$logMargPost()

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.194057,1.00912]
* trend constant (est.): 0.388566
* variance (est.): 0.158896
* covariance:
 * kernel: matern3_2
 * range (est.): 0.313364
 * fit:
 * objective: LMP
 * optim: BFGS
[1] 10.64938

[image:]

Reference

	Code: https://github.com/libKriging/libKriging/blob/master/src/lib/Kriging.cpp#L494

	The RobustGaSP R package[#1]

Footnotes

[#1]
https://CRAN.R-project.org/package=RobustGaSP

Kriging::logMargPostFun

Description

Compute the Log-Marginal Posterior Density of a Kriging Model Object for a given
Vector \(\boldsymbol{\theta}\) of Correlation Ranges

Usage

	Python

k = Kriging(...)
k.logMargPostFun(theta, grad = FALSE)

	R

k = Kriging(...)
k$logMargPostFun(theta, grad = FALSE)

	Matlab/Octave

% k = Kriging(...)
k.logMargPostFun(theta, grad = FALSE)

Arguments

	Argument

	Description

	theta

	Numeric vector of correlation range parameters at which the function is to be evaluated.

	grad

	Logical. Should the function return the gradient (w.r.t theta)?

Details

The log-marginal posterior density relates to the jointly robust
prior \(\pi_{\texttt{JR}}(\boldsymbol{\theta},\, \sigma^2, \,
\boldsymbol{\beta}) \propto \pi(\boldsymbol{\theta}) \, \sigma^{-2}\). The
marginal (or integrated) posterior is the function
\(\boldsymbol{\theta}\) obtained by marginalizing out the GP variance
\(\sigma^2\) and the vector \(\boldsymbol{\beta}\) of trend
coefficients. Due to the form of the prior, the marginalization can be
done on the likelihood \(p_{\texttt{marg}}(\boldsymbol{\theta}\,\vert
\,\mathbf{y}) \propto \pi(\boldsymbol{\theta}) \times
L_{\texttt{marg}}(\boldsymbol{\theta};\,\mathbf{y})\).

Value

The value of the log-marginal posterior density \(\log
p_{\texttt{marg}}(\boldsymbol{\theta} \,|\, \mathbf{y})\). By
maximizing this function we should get the estimate of
\(\boldsymbol{\theta}\) obtained when using objective = "LMP" in the
fit.Kriging method.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)

k <- Kriging(y, X, "matern3_2", objective="LMP")
print(k)

lmp <- function(theta) k$logMargPostFun(theta)$logMargPost

t <- seq(from = 0.01, to = 2, length.out = 101)
plot(t, lmp(t), type = "l")
abline(v = k$theta(), col = "blue")

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.194057,1.00912]
* trend constant (est.): 0.388566
* variance (est.): 0.158896
* covariance:
 * kernel: matern3_2
 * range (est.): 0.313364
 * fit:
 * objective: LMP
 * optim: BFGS

[image:]

Footnotes

NuggetKriging::fit

Description

Fit a NuggetKriging Model Object using given Observations

Usage

	Python

k = NuggetKriging(kernel=...)
k.fit(y, X,
 regmodel = "constant",
 normalize = False,
 optim = "BFGS",
 objective = "LL",
 parameters = None)

	R

k = NuggetKriging(kernel=...)
k$fit(y, X,
 regmodel = "constant",
 normalize = FALSE,
 optim = "BFGS",
 objective = "LL",
 parameters = NULL)

	Matlab/Octave

% k = NuggetKriging(kernel=...)
k.fit(y, X,
 regmodel = "constant",
 normalize = false,
 optim = "BFGS",
 objective = "LL",
 parameters = [])

Arguments

	Argument

	Description

	y

	Numeric vector of response values.

	X

	Numeric matrix of input design.

	regmodel

	Universal NuggetKriging linear trend.

	normalize

	Logical. If TRUE both the input matrix X and the response y in normalized to take values in the interval \([0, 1]\) .

	optim

	Character giving the Optimization method used to fit hyper-parameters. Possible values are: "BFGS" and "none" , the later simply keeping the values given in parameters . The method "BFGS" uses the gradient of the objective.

	objective

	Character giving the objective function to optimize. Possible values are: "LL" for the Log-Likelihood and "LMP" for the Log-Marginal Posterior.

	parameters

	Initial values for the hyper-parameters. When provided this must be named list with some elements "sigma2" , "theta" , "nugget" containing the initial value(s) for the variance, range and nugget parameters. If theta is a matrix with more than one row, each row is used as a starting point for optimization.

	kernel

	Character defining the covariance model: "exp" , "gauss" , "matern3_2" , "matern5_2" .

Details

The hyper-parameters (variance and vector of correlation ranges)
are estimated thanks to the optimization of a criterion given by
objective , using the method given in optim .

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 * rnorm(nrow(X))

k <- NuggetKriging("matern3_2")
print("before fit")
print(k)

k$fit(y,X)
print("after fit")
print(k)

Results

[1] "before fit"
* covariance:
 * kernel: matern3_2
[1] "after fit"
* data: 10x[0.0455565,0.940467] -> 10x[0.149491,0.940566]
* trend constant (est.): 0.488124
* variance (est.): 0.0788813
* covariance:
 * kernel: matern3_2
 * range (est.): 0.275004
 * nugget (est.): 0.00347449
 * fit:
 * objective: LL
 * optim: BFGS

[image:]

Footnotes

NuggetKriging::logLikelihood

Description

Get the Maximized Log-Likelihood of a NuggetKriging Model Object

Usage

	Python

k = NuggetKriging(...)
k.logLikelihood()

	R

k$logLikelihood()

	Matlab/Octave

% k = NuggetKriging(...)
k.logLikelihood()

Details

See logLikelihoodFun.NuggetKriging
for more details on the corresponding profile log-likelihood function.

Value

The value of the maximized profile log-likelihood
\(\ell_{\texttt{prof}}(\widehat{\boldsymbol{\theta}},\,\widehat{\alpha})\)
where \(\alpha:= \sigma^2 / (\sigma^2 + \nu^2)\) is the ratio of the
variances \(\sigma^2\) for the GP and \(\sigma^2 + \nu^2\) for the GP \(+\)
nugget. This is also the value \(\ell(\widehat{\boldsymbol{\theta}},\,
\widehat{\alpha},\, \widehat{\sigma}^2,\, \widehat{\boldsymbol{\beta}})\)
or \(\ell(\widehat{\boldsymbol{\theta}},\,
\widehat{\sigma}^2,\, \widehat{\tau}^2, \, \widehat{\boldsymbol{\beta}})\)
of the maximized log-likelihood.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 * rnorm(nrow(X))

k <- NuggetKriging(y, X, kernel = "matern3_2", objective="LL")
print(k)

k$logLikelihood()

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.149491,0.940566]
* trend constant (est.): 0.488124
* variance (est.): 0.0788813
* covariance:
 * kernel: matern3_2
 * range (est.): 0.275004
 * nugget (est.): 0.00347449
 * fit:
 * objective: LL
 * optim: BFGS
[1] 4.95114

[image:]

Reference

	Code: https://github.com/libKriging/libKriging/blob/master/src/lib/NuggetKriging.cpp#L94

Footnotes

NuggetKriging::logLikelihoodFun

Description

Compute the Profile Log-Likelihood of a NuggetKriging Model for given
Vector \(\boldsymbol{\theta}\) of Correlation Ranges and a given Ratio
of Variances \(\texttt{GP} / (\texttt{GP} + \texttt{nugget})\)

Usage

	Python

k = NuggetKriging(...)
k.logLikelihoodFun(theta_alpha, grad = FALSE)

	R

k = NuggetKriging(...)
k$logLikelihoodFun(theta_alpha, grad = FALSE)

	Matlab/Octave

% k = NuggetKriging(...)
k.logLikelihoodFun(theta_alpha, grad = FALSE)

Arguments

	Argument

	Description

	theta_alpha

	A numeric vector of (positive) range parameters and variance over nugget + variance at which the log-likelihood will be evaluated.

	grad

	Logical. Should the function return the gradient?

Details

Consider the log-likelihood function \(\ell(\boldsymbol{\theta}, \, \sigma^2, \,
\tau^2, \,\boldsymbol{\beta})\) where \(\sigma^2\) and \(\tau^2\) are the
variances of the GP and the nugget components. A re-parameterization
can be used with the two variances replaced by \(\nu^2 := \sigma^2 +
\tau^2\) and \(\alpha := \sigma^2 / (\sigma^2 + \tau^2)\). The profile
log-likelihood is then obtained by replacing the variance \(\nu^2 :=
\sigma^2 + \tau^2\) and the vector \(\boldsymbol{\beta}\) of trend
coefficients by their ML estimates \(\widehat{\nu}^2\) and
\(\widehat{\boldsymbol{\beta}}\) which are obtained by Generalized Least
Squares. See here for more details.

Value

The value of the profile log-likelihood
\(\ell_{\texttt{prof}}(\boldsymbol{\theta},\,\alpha)\) for the given
vector \(\boldsymbol{\theta}\) of correlation ranges and the given
variance ratio \(\alpha := \sigma^2 / (\sigma^2 + \tau^2)\) where
\(\sigma^2\) and \(\tau^2\) stand for the GP and the nugget variance. The
parameters must be such that \(\theta_k >0\) for \(k=1\), \(\dots\), \(d\) and
\(0 < \alpha < 1\).

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 * rnorm(nrow(X))

k <- NuggetKriging(y, X, kernel = "matern3_2")
print(k)

theta0 = k$theta()
ll_alpha <- function(alpha) k$logLikelihoodFun(cbind(theta0,alpha))$logLikelihood
a <- seq(from = 0.9, to = 1.0, length.out = 101)
plot(a, Vectorize(ll_alpha)(a), type = "l",xlim=c(0.9,1))
abline(v = k$sigma2()/(k$sigma2()+k$nugget()), col = "blue")

alpha0 = k$sigma2()/(k$sigma2()+k$nugget())
ll_theta <- function(theta) k$logLikelihoodFun(cbind(theta,alpha0))$logLikelihood
t <- seq(from = 0.001, to = 2, length.out = 101)
plot(t, Vectorize(ll_theta)(t), type = 'l')
abline(v = k$theta(), col = "blue")

ll <- function(theta_alpha) k$logLikelihoodFun(theta_alpha)$logLikelihood
a <- seq(from = 0.9, to = 1.0, length.out = 31)
t <- seq(from = 0.001, to = 2, length.out = 101)
contour(t,a,matrix(ncol=length(a),ll(expand.grid(t,a))),xlab="theta",ylab="sigma2/(sigma2+nugget)")
points(k$theta(),k$sigma2()/(k$sigma2()+k$nugget()),col='blue')

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.149491,0.940566]
* trend constant (est.): 0.488124
* variance (est.): 0.0788813
* covariance:
 * kernel: matern3_2
 * range (est.): 0.275004
 * nugget (est.): 0.00347449
 * fit:
 * objective: LL
 * optim: BFGS

[image:]

Footnotes

NuggetKriging::logMargPost

Description

Get the Maximized Log-Marginal Posterior Density of a NuggetKriging
Model

Usage

	Python

k = NuggetKriging(...)
k.logMargPost()

	R

k = NuggetKriging(...)
k$logMargPost()

	Matlab/Octave

% k = NuggetKriging(...)
k.logMargPost()

Details

Using the jointly robust prior
\(\pi_{\texttt{JR}}(\boldsymbol{\theta},\, \alpha, \,\sigma^2, \,
\boldsymbol{\beta})\) the marginal or integrated posterior is the
function of \(\boldsymbol{\theta}\) and \(\alpha\) obtained from the
posterior density by marginalizing out the GP variance \(\sigma^2\) and
the vector \(\boldsymbol{\beta}\) of trend coefficients. See
logMargPostFun.NuggetKriging for the
log-marginal posterior density. By maximizing this function
w.r.t. \(\boldsymbol{\theta}\) and \(\alpha\) we get estimated correlation
ranges which are warranted to be postitive and finite \(0 < \theta_k <
\infty\). The estimated variance ratio is such that \(0 < \alpha < 1\).

Value

The maximal value of the log-marginal posterior density, corresponding
to the estimated value of the vector \([\boldsymbol{\theta},\,\alpha]\)
where \(\boldsymbol{\theta}\) is the vector of correlation ranges and
\(\alpha := \sigma^2/ (\sigma^2 + \tau^2)\) is the ratio of variance
\(\texttt{GP} / (\texttt{GP} + \texttt{nugget})\).

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 * rnorm(nrow(X))

k <- NuggetKriging(y, X, kernel = "matern3_2", objective="LMP")
print(k)

k$logMargPost()

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.149491,0.940566]
* trend constant (est.): 0.389559
* variance (est.): 0.192207
* covariance:
 * kernel: matern3_2
 * range (est.): 0.434061
 * nugget (est.): 0.00330572
 * fit:
 * objective: LMP
 * optim: BFGS
[1] 7.010943

[image:]

Reference

	Code: https://github.com/libKriging/libKriging/blob/master/src/lib/NuggetKriging.cpp#L494

	The RobustGaSP R package[#1]

Footnotes

[#1]
https://CRAN.R-project.org/package=RobustGaSP

NuggetKriging::logMargPostFun

Description

Compute the Log-Marginal Posterior Density of a NuggetKriging Model
for a given Vector \(\boldsymbol{\theta}\) of Correlation
Ranges and a given Ratio \(\sigma^2 / (\sigma^2 + \tau^2)\) of Variances
\(\texttt{GP} / (\texttt{GP}+ \texttt{nugget})\)

Usage

	Python

k = Kriging(...)
k.logMargPostFun(theta_alpha, grad = FALSE)

	R

k = Kriging(...)
k$logMargPostFun(theta_alpha, grad = FALSE)

	Matlab/Octave

% k = Kriging(...)
k.logMargPostFun(theta_alpha, grad = FALSE)

Arguments

	Argument

	Description

	theta_alpha

	Numeric vector of correlation range and variance over nugget + variance parameters at which the function is to be evaluated.

	grad

	Logical. Should the function return the gradient (w.r.t theta_alpha)?

Details

The log-marginal posterior density relates to the jointly robust
prior \(\pi_{\texttt{JR}}(\boldsymbol{\theta},\, \alpha,\,\sigma^2, \,
\boldsymbol{\beta}) \propto \pi(\boldsymbol{\theta},\,\alpha) \, \sigma^{-2}\). The
marginal (or integrated) posterior is the function
\(\boldsymbol{\theta}\) and \(\alpha\) obtained by marginalizing out the GP variance
\(\sigma^2\) and the vector \(\boldsymbol{\beta}\) of trend
coefficients. Due to the form of the prior, the marginalization can be
done on the likelihood \(p_{\texttt{marg}}(\boldsymbol{\theta},\,\alpha \,\vert
\,\mathbf{y}) \propto \pi(\boldsymbol{\theta},\,\alpha) \times
L_{\texttt{marg}}(\boldsymbol{\theta},\,\alpha;\,\mathbf{y})\).

Value

The value of the log-marginal posterior density \(\log
p_{\texttt{marg}}(\boldsymbol{\theta},\,\alpha \,|\, \mathbf{y})\)
where \(\boldsymbol{\theta}\) is the vector of correlation ranges and
\(\alpha = \sigma^2 / (\sigma^2 + \tau^2)\) is the ratio of variances
\(\texttt{GP}/ (\texttt{GP} + \texttt{nugget})\). By maximizing this
function we should get the estimates of \(\boldsymbol{\theta}\) and
\(\alpha\) obtained when using objective = "LMP" in the
fit.NuggetKriging method.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 * rnorm(nrow(X))

k <- NuggetKriging(y, X, "matern3_2", objective="LMP")
print(k)

theta0 = k$theta()
lmp_alpha <- function(alpha) k$logMargPostFun(cbind(theta0,alpha))$logMargPost
a <- seq(from = 0.9, to = 1.0, length.out = 101)
plot(a, Vectorize(lmp_alpha)(a), type = "l",xlim=c(0.9,1))
abline(v = k$sigma2()/(k$sigma2()+k$nugget()), col = "blue")

alpha0 = k$sigma2()/(k$sigma2()+k$nugget())
lmp_theta <- function(theta) k$logMargPostFun(cbind(theta,alpha0))$logMargPost
t <- seq(from = 0.001, to = 2, length.out = 101)
plot(t, Vectorize(lmp_theta)(t), type = 'l')
abline(v = k$theta(), col = "blue")

lmp <- function(theta_alpha) k$logMargPostFun(theta_alpha)$logMargPost
t <- seq(from = 0.4, to = 0.6, length.out = 51)
a <- seq(from = 0.9, to = 1, length.out = 51)
contour(t,a,matrix(ncol=length(t),lmp(expand.grid(t,a))),nlevels=50,xlab="theta",ylab="sigma2/(sigma2+nugget)")
points(k$theta(),k$sigma2()/(k$sigma2()+k$nugget()),col='blue')

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.149491,0.940566]
* trend constant (est.): 0.389559
* variance (est.): 0.192207
* covariance:
 * kernel: matern3_2
 * range (est.): 0.434061
 * nugget (est.): 0.00330572
 * fit:
 * objective: LMP
 * optim: BFGS

[image:]

Footnotes

NoiseKriging::fit

Description

Fit a NoiseKriging Model Object with given Observations

Usage

	Python

k = NoiseKriging(kernel=...)
k.fit(y, noise, X,
 regmodel = "constant",
 normalize = False,
 optim = "BFGS",
 objective = "LL",
 parameters = None)

	R

k = NoiseKriging(kernel=...)
k$fit(y, noise, X,
 regmodel = "constant",
 normalize = FALSE,
 optim = "BFGS",
 objective = "LL",
 parameters = NULL)

	Matlab/Octave

% k = NoiseKriging(kernel=...)
k.fit(y, noise, X,
 regmodel = "constant",
 normalize = false,
 optim = "BFGS",
 objective = "LL",
 parameters = [])

Arguments

	Argument

	Description

	y

	Numeric vector of response values.

	noise

	Numeric vector of response variances.

	X

	Numeric matrix of input design.

	regmodel

	Universal NoiseKriging linear trend.

	normalize

	Logical. If TRUE both the input matrix X and the response y in normalized to take values in the interval \([0, 1]\) .

	optim

	Character giving the Optimization method used to fit hyper-parameters. Possible values are: "BFGS" and "none" , the later simply keeping the values given in parameters . The method "BFGS" uses the gradient of the objective.

	objective

	Character giving the objective function to optimize. Possible values are: "LL" for the Log-Likelihood.

	parameters

	Initial values for the hyper-parameters. When provided this must be named list with elements "sigma2" and "theta" containing the initial value(s) for the variance and for the range parameters. If theta is a matrix with more than one row, each row is used as a starting point for optimization.

	kernel

	Character defining the covariance model: "exp" , "gauss" , "matern3_2" , "matern5_2" .

Details

The hyper-parameters (variance and vector of correlation ranges) are
estimated thanks to the optimization of a criterion given by
objective , using the method given in optim. For now only the
maximum-likelihood estimation is allowed. See this section
for more details on the maximum-likelihood estimation.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 * rnorm(nrow(X)) # add noise dep. on X

k <- NoiseKriging("matern3_2")
print("before fit")
print(k)

k$fit(y,noise=(X/10)^2,X)
print("after fit")
print(k)

Results

[1] "before fit"
* covariance:
 * kernel: matern3_2
[1] "after fit"
* data: 10x[0.0455565,0.940467] -> 10x[0.152144,0.957381]
* trend constant (est.): 0.487335
* variance (est.): 0.0635381
* covariance:
 * kernel: matern3_2
 * range (est.): 0.211413
 * noise: 0.000827008, 0.00621425, 0.00167262, 0.0077972, 0.00884479, 2.07539e-05, 0.00278895, 0.00796412, 0.00304081, 0.00208497
 * fit:
 * objective: LL
 * optim: BFGS

[image:]

Footnotes

NoiseKriging::logLikelihood

Description

Get the Maximized Log-Likelihood of a NoiseKriging Model Object

Usage

	Python

k = NoiseKriging(...)
k.logLikelihood()

	R

k = NoiseKriging(...)
k$logLikelihood()

	Matlab/Octave

% k = NoiseKriging(...)
k.logLikelihood()

Details

See logLikelihoodFun.NoiseKriging
for more details on the corresponding profile log-likelihood function.

Value

The value of the maximized profile log-likelihood
\(\ell_{\texttt{prof}}(\widehat{\boldsymbol{\theta}},\,\widehat{\sigma}^2)\).
This is also the maximized value
\(\ell(\widehat{\boldsymbol{\theta}},\, \widehat{\sigma}^2,\,
\widehat{\boldsymbol{\beta}})\) of the log-likelihood.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 * rnorm(nrow(X))

k <- NoiseKriging(y, (X/10)^2, X, kernel = "matern3_2", objective="LL")
print(k)

k$logLikelihood()

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.152144,0.957381]
* trend constant (est.): 0.487335
* variance (est.): 0.0635381
* covariance:
 * kernel: matern3_2
 * range (est.): 0.211413
 * noise: 0.000827008, 0.00621425, 0.00167262, 0.0077972, 0.00884479, 2.07539e-05, 0.00278895, 0.00796412, 0.00304081, 0.00208497
 * fit:
 * objective: LL
 * optim: BFGS
[1] 5.200129

[image:]

Reference

	Code: https://github.com/libKriging/libKriging/blob/master/src/lib/NoiseKriging.cpp#L94

Footnotes

NoiseKriging::logLikelihoodFun

Description

Compute the Profile Log-Likelihood of a NoiseKriging Model for a
given Vector \(\boldsymbol{\theta}\) of Correlation Ranges and a given
GP Variance \(\sigma^2\)

Usage

	Python

k = NoiseKriging(...)
k.logLikelihoodFun(theta_sigma2, grad)

	R

k = NoiseKriging(...)
k$logLikelihoodFun(theta_sigma2, grad)

	Matlab/Octave

% k = NoiseKriging(...)
k.logLikelihoodFun(theta_sigma2, grad)

Arguments

	Argument

	Description

	theta_sigma2

	A numeric vector of (positive) range parameters and variance at which the log-likelihood will be evaluated.

	grad

	Logical. Should the function return the gradient?

Details

The profile log-likelihood is obtained from the log-likelihood
function \(\ell(\boldsymbol{\theta},\, \sigma^2, \,
\boldsymbol{\beta})\) by replacing the vector \(\boldsymbol{\beta}\) of
trend coefficients by its ML estimate \(\widehat{\boldsymbol{\beta}}\)
which is obtained by Generalized Least Squares. See here
for more details.

Value

The value of the profile log-likelihood
\(\ell_{\texttt{prof}}(\boldsymbol{\theta},\,\sigma^2)\) for the given
vector \(\boldsymbol{\theta}\) of correlation ranges and the given GP
variance \(\sigma^2\).

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 *rnorm(nrow(X))

k <- NoiseKriging(y, (X/10)^2, X, kernel = "matern3_2")
print(k)

theta0 = k$theta()
ll_sigma2 <- function(sigma2) k$logLikelihoodFun(cbind(theta0,sigma2))$logLikelihood
s2 <- seq(from = 0.001, to = 1, length.out = 101)
plot(s2, Vectorize(ll_sigma2)(s2), type = 'l')
abline(v = k$sigma2(), col = "blue")

sigma20 = k$sigma2()
ll_theta <- function(theta) k$logLikelihoodFun(cbind(theta,sigma20))$logLikelihood
t <- seq(from = 0.001, to = 2, length.out = 101)
plot(t, Vectorize(ll_theta)(t), type = 'l')
abline(v = k$theta(), col = "blue")

ll <- function(theta_sigma2) k$logLikelihoodFun(theta_sigma2)$logLikelihood
s2 <- seq(from = 0.001, to = 1, length.out = 31)
t <- seq(from = 0.001, to = 2, length.out = 31)
contour(t,s2,matrix(ncol=length(s2),ll(expand.grid(t,s2))),xlab="theta",ylab="sigma2")
points(k$theta(),k$sigma2(),col='blue')

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.152144,0.957381]
* trend constant (est.): 0.487335
* variance (est.): 0.0635381
* covariance:
 * kernel: matern3_2
 * range (est.): 0.211413
 * noise: 0.000827008, 0.00621425, 0.00167262, 0.0077972, 0.00884479, 2.07539e-05, 0.00278895, 0.00796412, 0.00304081, 0.00208497
 * fit:
 * objective: LL
 * optim: BFGS

[image:]

Footnotes

Kriging::predict

Description

Predict from a Kriging Model Object

Usage

	Python

k = Kriging(...)
k.predict(x, stdev = True, cov = False, deriv = False)

	R

k = Kriging(...)
k$predict(x, stdev = TRUE, cov = FALSE, deriv = FALSE)

	Matlab/Octave

% k = Kriging(...)
k.predict(x, stdev = true, cov = false, deriv = false)

Arguments

	Argument

	Description

	x

	Input points where the prediction must be computed.

	stdev

	Logical . If TRUE the standard deviation is returned.

	cov

	Logical . If TRUE the covariance matrix of the predictions is returned.

	deriv

	Logical . If TRUE the derivatives of mean and sd of the predictions are returned.

Details

Given \(n^\star\) “new” input points \(\mathbf{x}^\star_{j}\), the method
compute the expectation, the standard deviation and (optionally) the covariance
of the “new” observations \(y(\mathbf{x}^\star_j)\) of the
stochastic process, conditional on the \(n\) values \(y(\mathbf{x}_i)\) at
the input points \(\mathbf{x}_i\) as used when fitting the model. The
\(n^\star\) input vectors (with length \(d\)) are given as the rows of a
\(\mathbf{X}^\star\) corresponding to x.

The computation of these quantities is often called Universal
Kriging see here for more details.

Value

A list containing the element mean and possibly stdev and
cov.

	The expectation in mean is the estimate of the vector
\(\textsf{E}[\mathbf{y}^\star \, \vert \,\mathbf{y}]\) with length
\(n^\star\) where \(\mathbf{y}^\star\) and \(\mathbf{y}\) are the random
vectors corresponding to the observation and the “new” input
points. Similarly the conditional standard deviation in stdev is
a vector with length \(n^\star\) and the conditional covariance in
cov is a \(n^\star \times n^\star\) matrix.

	The (optional) derivatives are two \(n^\star \times d\) matrices
pred_mean_deriv and pred_sdtdev_deriv with their row \(j\)
containing the vector of derivatives w.r.t. to the new input point
\(\mathbf{x}^\star\) evaluated at \(\mathbf{x}^\star =
 \mathbf{x}^\star_j\). So the row \(j\) of pred_mean_deriv contains
the derivative \(\partial_{\mathbf{x}^\star}
 \mathbb{E}[y(\mathbf{x}^\star) \, \vert \,\mathbf{y}]\). evaluated
at \(\mathbf{x}^\star = \mathbf{x}^\star_j\).

Note that for a Kriging object the prediction is actually an
interpolation.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)
points(X, y, col = "blue", pch = 16)

k <- Kriging(y, X, "matern3_2")

x <-seq(from = 0, to = 1, length.out = 101)
p <- k$predict(x)

lines(x, p$mean, col = "blue")
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)), border = NA, col = rgb(0, 0, 1, 0.2))

Results

[image:]

Reference

	Code: https://github.com/libKriging/libKriging/blob/master/src/lib/Kriging.cpp#L1326

Footnotes

Kriging::simulate

Description

Simulate from a Kriging Model Object.

Usage

	Python

k = Kriging(...)
k.predict(nsim = 1, seed = 123, x)

	R

k = Kriging(...)
k$predict(nsim = 1, seed = 123, x)

	Matlab/Octave

% k = Kriging(...)
k.predict(nsim = 1, seed = 123, x)

Arguments

	Argument

	Description

	nsim

	Number of simulations to perform.

	seed

	Random seed used.

	x

	Points in model input space where to simulate.

Details

This method draws \(n_{\texttt{sim}}\) paths of the stochastic process
\(y(\mathbf{x})\) at the \(n^\star\) given new input points
\(\mathbf{x}^\star_j\) conditional on the values \(y(\mathbf{x}_i)\) at
the input points used in the fit.

Value

A matrix with length(x) rows and nsim columns containing the
simulated paths at the inputs points given in x.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)
points(X, y, col = "blue")

k <- Kriging(y, X, kernel = "matern3_2")

x <- seq(from = 0, to = 1, length.out = 101)
s <- k$simulate(nsim = 3, x = x)

lines(x, s[, 1], col = "blue")
lines(x, s[, 2], col = "blue")
lines(x, s[, 3], col = "blue")

Results

[image:]

Reference

	Code: https://github.com/libKriging/libKriging/blob/master/src/lib/Kriging.cpp#L1501

Footnotes

NuggetKriging::predict

Description

Predict from a NuggetKriging Model Object

Usage

	Python

k = NuggetKriging(...)
k.predict(x, stdev = True, cov = False, deriv = False)

	R

k = NuggetKriging(...)
k$predict(x, stdev = TRUE, cov = FALSE, deriv = FALSE)

	Matlab/Octave

% k = NuggetKriging(...)
k.predict(x, stdev = true, cov = false, deriv = false)

Arguments

	Argument

	Description

	x

	Input points where the prediction must be computed.

	stdev

	Logical . If TRUE the standard deviation is returned.

	cov

	Logical . If TRUE the covariance matrix of the predictions is returned.

	deriv

	Logical . If TRUE the derivatives of mean and sd of the predictions are returned.

Details

Given \(n^\star\) “new” input points \(\mathbf{x}^\star_{j}\), the method
compute the expectation, the standard deviation and (optionally) the covariance
of the “new” observations \(y(\mathbf{x}^\star_j)\) of the
stochastic process, conditional on the \(n\) values \(y(\mathbf{x}_i)\) at
the input points \(\mathbf{x}_i\) as used when fitting the model. The
\(n^\star\) input vectors (with length \(d\)) are given as the rows of a
\(\mathbf{X}^\star\) corresponding to x.

The computation of these quantities is often called Universal
Kriging see here for more details.

Value

A list containing the element mean and possibly stdev and
cov.

	The expectation in mean is the estimate of the vector
\(\textsf{E}[\mathbf{y}^\star \, \vert \,\mathbf{y}]\) with length
\(n^\star\) where \(\mathbf{y}^\star\) and \(\mathbf{y}\) are the random
vectors corresponding to the observation and the “new” input
points. Similarly the conditional standard deviation in stdev is
a vector with length \(n^\star\) and the conditional covariance in
cov is a \(n^\star \times n^\star\) matrix.

	The (optional) derivatives are two \(n^\star \times d\) matrices
pred_mean_deriv and pred_sdtdev_deriv with their row \(j\)
containing the vector of derivatives w.r.t. to the new input point
\(\mathbf{x}^\star\) evaluated at \(\mathbf{x}^\star =
 \mathbf{x}^\star_j\). So the row \(j\) of pred_mean_deriv contains
the derivative \(\partial_{\mathbf{x}^\star}
 \mathbb{E}[y(\mathbf{x}^\star) \, \vert \,\mathbf{y}]\). evaluated
at \(\mathbf{x}^\star = \mathbf{x}^\star_j\).

Note that for a NuggetKriging object if it happens that the new
input \(\mathbf{x}^\star\) is exactly equal to one of the inputs
\(\mathbf{x}_i\) then the corresponding prediction will be equal to the
corresponding observed output \(y_i\). So the prediction is
discontinuous at the observations.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 * rnorm(nrow(X))
points(X, y, col = "blue", pch = 16)

k <- NuggetKriging(y, X, "matern3_2")

x <- sort(c(X,seq(from = 0, to = 1, length.out = 101))) # include design points to see interpolation
p <- k$predict(x)

lines(x, p$mean, col = "blue")
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)), border = NA, col = rgb(0, 0, 1, 0.2))

Results

[image:]

Reference

	Code: https://github.com/libKriging/libKriging/blob/master/src/lib/NuggetKriging.cpp#L1326

Footnotes

NuggetKriging::simulate

Description

Simulation from a NuggetKriging model object.

Usage

	Python

k = NuggetKriging(...)
k.predict(nsim = 1, seed = 123, x)

	R

k = NuggetKriging(...)
k$predict(nsim = 1, seed = 123, x)

	Matlab/Octave

% k = NuggetKriging(...)
k.predict(nsim = 1, seed = 123, x)

Arguments

	Argument

	Description

	nsim

	Number of simulations to perform.

	seed

	Random seed used.

	x

	Points in model input space where to simulate.

Details

This method draws paths of the stochastic process at new input
points conditional on the values at the input points used in the
fit.

Value

a matrix with length(x) rows and nsim
columns containing the simulated paths at the inputs points
given in x .

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 *rnorm(nrow(X))
points(X, y, col = "blue")

k <- NuggetKriging(y, X, kernel = "matern3_2")

x <- seq(from = 0, to = 1, length.out = 101)
s <- k$simulate(nsim = 3, x = x)

lines(x, s[, 1], col = "blue")
lines(x, s[, 2], col = "blue")
lines(x, s[, 3], col = "blue")

Results

[image:]

Reference

	Code: https://github.com/libKriging/libKriging/blob/master/src/lib/NuggetKriging.cpp#L1501

Footnotes

NoiseKriging::predict

Description

Predict from a NoiseKriging Model Object

Usage

	Python

k = NoiseKriging(...)
k.predict(x, stdev = True, cov = False, deriv = False)

	R

k = NoiseKriging(...)
k$predict(x, stdev = TRUE, cov = FALSE, deriv = FALSE)

	Matlab/Octave

% k = NoiseKriging(...)
k.predict(x, stdev = true, cov = false, deriv = false)

Arguments

	Argument

	Description

	x

	Input points where the prediction must be computed.

	stdev

	Logical . If TRUE the standard deviation is returned.

	cov

	Logical . If TRUE the covariance matrix of the predictions is returned.

	deriv

	Logical . If TRUE the derivatives of mean and sd of the predictions are returned.

Details

Given \(n^\star\) “new” input points \(\mathbf{x}^\star_{j}\), the method
compute the expectation, the standard deviation and (optionally) the
covariance of the estimated values of the “trend \(+\) GP” stochastic
process \(\mu(\mathbf{x}_j^\star) + \zeta(\mathbf{x}_j^\star)\) at the
“new” observations. The estimation is based on the distribution
conditional on the \(n\) noisy observations \(y_i\) made at the input
points \(\mathbf{x}_i\) as used when fitting the model. The \(n^\star\)
input vectors (with length \(d\)) are given as the rows of a
\(\mathbf{X}^\star\) corresponding to x.

The computation of these quantities is often called Universal
Kriging see here for more details.

Value

A list containing the element mean and possibly stdev and
cov.

	The expectation in mean is the estimate of the vector
\(\textsf{E}[\boldsymbol{\mu}^\star + \boldsymbol{\zeta}^\star \,
 \vert \,\mathbf{y}]\) with length \(n^\star\) where
\(\boldsymbol{\mu}^\star\) and \(\boldsymbol{\zeta}^\star\) are for “new”
points and \(\mathbf{y}\) corresponds to the observations. Similarly
the conditional standard deviation in stdev is a vector with
length \(n^\star\) and the conditional covariance in cov is a
\(n^\star \times n^\star\) matrix.

	The (optional) derivatives are two \(n^\star \times d\) matrices
pred_mean_deriv and pred_sdtdev_deriv with their row \(j\)
containing the vector of derivatives w.r.t. to the new input point
\(\mathbf{x}^\star\) evaluated at \(\mathbf{x}^\star =
 \mathbf{x}^\star_j\). So the row \(j\) of pred_mean_deriv contains
the derivative \(\partial_{\mathbf{x}^\star}
 \mathbb{E}[y(\mathbf{x}^\star) \, \vert \,\mathbf{y}]\). evaluated
at \(\mathbf{x}^\star = \mathbf{x}^\star_j\).

Note that for a NoiseKriging object the prediction is actually a
smoothing. The so-called Kriging mean function \(\mathbf{x}^\star
\mapsto \mathbb{E}[y(\mathbf{x}^\star) \, \vert \, \mathbf{y}]\) is a
smooth function. Depending on the given noise variances \(\sigma^2_i\)
given in the fit step, the prediction at
\(\mathbf{x}^\star \approx \mathbf{x}_i\) will be more or less close to
the observed value \(y_i\). As opposed to the
NuggetKriging model case, duplicated inputs can be
used in the design.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 * rnorm(nrow(X))
points(X, y, col = "blue", pch = 16)

k <- NoiseKriging(y, (X/10)^2, X, "matern3_2")

x <-seq(from = 0, to = 1, length.out = 101)
p <- k$predict(x)

lines(x, p$mean, col = "blue")
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)),
border = NA, col = rgb(0, 0, 1, 0.2))

Results

[image:]

Reference

	Code: https://github.com/libKriging/libKriging/blob/master/src/lib/NoiseKriging.cpp#L1326

Footnotes

NoiseKriging::simulate

Description

Simulation from a NoiseKriging model object.

Usage

	Python

k = NoiseKriging(...)
k.predict(nsim = 1, seed = 123, x)

	R

k = NoiseKriging(...)
k$predict(nsim = 1, seed = 123, x)

	Matlab/Octave

% k = NoiseKriging(...)
k.predict(nsim = 1, seed = 123, x)

Arguments

	Argument

	Description

	nsim

	Number of simulations to perform.

	seed

	Random seed used.

	x

	Points in model input space where to simulate.

Details

This method draws paths of the stochastic process at new input
points conditional on the values at the input points used in the
fit.

Value

a matrix with length(x) rows and nsim
columns containing the simulated paths at the inputs points
given in x .

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 * rnorm(nrow(X))
points(X, y, col = "blue")

k <- NoiseKriging(y, (X/10)^2, X, kernel = "matern3_2")

x <- seq(from = 0, to = 1, length.out = 101)
s <- k$simulate(nsim = 3, x = x)

lines(x, s[, 1], col = "blue")
lines(x, s[, 2], col = "blue")
lines(x, s[, 3], col = "blue")

Results

[image:]

Reference

	Code: https://github.com/libKriging/libKriging/blob/master/src/lib/NoiseKriging.cpp#L1501

Footnotes

Models description

	Kriging models

	Kriging steps

	Trend functions in Kriging models

	The tensor product kernel

	Parameters

	Functional point of view

	Trend estimation

	Prediction and simulation

	Maximum likelihood

	Leave-one-out

	Bayesian marginal analysis

Footnotes

Kriging models

Components of Kriging models

libKriging makes available several kinds of Kriging models as commonly used
in the field of computer experiments. All models involve a stochastic
process \(y(\mathbf{x})\) indexed by a vector \(\mathbf{x} \in \mathbb{R}^d\) of \(d\)
real inputs \(x_k\), sometimes called the design vector. The response
variable or output \(y\) is assumed to be observed for \(n\) values
\(\mathbf{x}_i\) of the input vector with corresponding response values \(y_i\)
for \(i=1\), \(\dots\), \(n\). The response values are considered as
realizations of random variables.

The models involve the following elements or components.

	Trend A known vector-valued function
\(\mathbb{R}^d \to \mathbb{R}^p\) with value denoted by
\(\mathbf{f}(\mathbf{x})\). It is used in relation with an unknown vector
\(\boldsymbol{\beta}\) of trend parameters to provide the trend term
\(\mu(\mathbf{x}) = \mathbf{f}(\mathbf{x})^\top \boldsymbol{\beta}\).

	Smooth Gaussian Process (GP) An unobserved GP
\(\zeta(\mathbf{x})\), at least continuous, with mean zero and known
covariance kernel \(C_\zeta(\mathbf{x}, \, \mathbf{x}')\).

	Nugget A White noise GP \(\varepsilon(\mathbf{x})\) with
variance \(\tau^2\) hence with covariance kernel
\(\tau^2 \delta(\mathbf{x},\,\mathbf{x}')\) where \(\delta\) is the Dirac function
\(\delta(\mathbf{x}, \,\mathbf{x}') := 1_{\{\mathbf{x} = \mathbf{x}'\}}\).

	Noise A collection of independent random variables
\(\varepsilon_i\) with variances \(\tau^2_i\).

Note that the words nugget and noise are sometimes
considered as equivalent. Yet in libKriging nugget will be used
only when a single path is considered for the stochastic process, in
which case no duplicated value can exist for the vector of inputs.

When a nugget term is used, the process \(y(\mathbf{x})\) is discontinuous,
so the prediction at a new value \(\mathbf{x}^\star\) will be identical to
\(y(\mathbf{x}_i)\) if it happens that \(\mathbf{x}^\star = \mathbf{x}_i\) for some
\(i\). We may say that the prediction is an interpolation, in relation
with this feature. However, in the usual acceptation of this term,
interpolation involves the use of a smooth function, say at
least continuous.

Note The so-called Gaussian-Process Regression framework
corresponds to the noisy case. However duplicated designs are
generally allowed and the noise r.vs are assumed to have either a
common unknown variance \(\tau^2\) or a variance \(\tau^2(\mathbf{x})\)
depending on the design according to some specification.

libKriging implements the three classes "Kriging",
"NoiseKriging" and "NuggetKriging" of objects
corresponding to Kriging models. In each class we find the linear
trend, the smooth GP. The difference relates to the presence of a
nugget or noise term.

Classes of Kriging model objects

To describe the three classes of Kriging models, we assume that \(n\)
observations are given corresponding to \(n\) input vectors \(\mathbf{x}_i\).

	The Kriging class correspond to observations of the form

\[
 \mathbf{y}(\mathbf{x}_i) =
 \underset{\text{trend}}{
 \underbrace{\mathbf{f}(\mathbf{x}_i)^\top \boldsymbol{\beta}}}
 +
 \underset{\text{smooth GP}}{\underbrace{\zeta(\mathbf{x}_i)}}, \qquad
 i= 1,\, \dots,\, n.
\]

	The "NuggetKriging" class corresponds to observations of the form

\[
 \mathbf{y}(\mathbf{x}_i) =
 \underset{\text{trend}}{
 \underbrace{\mathbf{f}(\mathbf{x}_i)^\top \boldsymbol{\beta}}}
 +
 \underset{\text{smooth GP}}{\underbrace{\zeta(\mathbf{x}_i)}}
 +
 \underset{\text{nugget}}{\underbrace{\varepsilon(\mathbf{x}_i)}},
 \qquad i= 1,\, \dots,\, n.
\]

The sum \(\eta(\mathbf{x}) := \zeta(\mathbf{x}) +
\varepsilon(\mathbf{x})\) defines a GP with discontinuous paths and
covariance kernel \(C(\mathbf{x}, \mathbf{x}') +
\tau^2\delta(\mathbf{x},\,\mathbf{x}')\).

	The "NoiseKriging" class corresponds to observations of the form

\[
 y_i =
 \underset{\text{trend}}{
 \underbrace{\mathbf{f}(\mathbf{x}_i)^\top \boldsymbol{\beta}}}
 +
 \underset{\text{smooth GP}}{\underbrace{\zeta(\mathbf{x}_i)}}
 +
 \underset{\text{noise}}{\underbrace{\varepsilon_i}},
 \qquad i= 1,\, \dots,\, n
\]

where the noise r.vs \(\varepsilon_i\) are Gaussian with mean zero and
known variances \(\tau_i^2\). Although the response \(y_i\) corresponds
to the input \(\mathbf{x}_i\) as for the classes "Kriging" and
"NugggetKriging", there can be several observations made at the
same input \(\mathbf{x}_i\). We may then speak of duplicated inputs.

Matrix formalism and assumptions

The \(n\) input vectors \(\mathbf{x}_i\) are conveniently considered as the
(transposed) rows of a matrix.

	The \(n \times d\) design or input matrix \(\mathbf{X}\)
having \(\mathbf{x}_i^\top\) as its row \(i\).

	The \(n \times p\) trend matrix \(\mathbf{F}(\mathbf{X})\) or simply \(\mathbf{F}\)
having \(\mathbf{f}(\mathbf{x}_i)^\top\) as its row \(i\).

	The \(n \times n\) covariance matrix
\(\mathbf{C}(\mathbf{X},\, \mathbf{X}) =[C(\mathbf{x}_i,\,\mathbf{x}_j)]_{i,j}\) is sometimes
called the Gram matrix and is often simply denoted as \(\mathbf{C}\).

The observations for a Kriging model write in matrix notations
\(\mathbf{y} = \mathbf{F} \boldsymbol{\beta} + \boldsymbol{\zeta}\),
while those for NuggetKriging and NoiseKriging models write as
\(\mathbf{y} = \mathbf{F} \boldsymbol{\beta} + \boldsymbol{\zeta} +
\boldsymbol{\varepsilon}\). Similar notations are used if a sequence
of \(n^\star\) “new” designs \(\mathbf{x}_i^\star\) are considered,
resulting in matrices with \(n^\star\) rows \(\mathbf{X}^\star\) and
\(\mathbf{F}^\star\).

It must be kept in mind that unless explicitly stated otherwise, the
covariance matrix \(\mathbf{C}\) is that of the non-trend component
\(\boldsymbol{\eta}\) including the smooth GP plus the nugget or noise.
It will be assumed that the matrix \(\mathbf{F}\) has rank \(p\) (hence
that \(n \geqslant p\)) and that the matrix \(\mathbf{C}\) is positive
definite. Inasmuch a positive kernel \(C_\zeta(\mathbf{x},\, \mathbf{x}')\) is
used the matrix \(\mathbf{C}_\zeta(\mathbf{X}, \, \mathbf{X})\) is
positive definite for every design \(\mathbf{X}\) corresponding to
distinct inputs \(\mathbf{x}_i\).

Note Berlinet and Thomas-Agnan [BTA04] define Kriging models as
the sum of a deterministic trend and a stochastic process with
stationary increments, as is the case for splines. So the name
Kriging model is understood here in a more restrictive way.

See the Prediction and simulation page.

Footnotes

Kriging steps

Kriging models can be used in different steps depending on the goal.

	Trend estimation If only the trend parameters \(\beta_k\) are
unknown, these can be estimated by Generalized Least
Squares. This step separates the observed response \(y_i\)
into a trend and component \(\widehat{\mu}(\mathbf{x}_i)\) a non-trend
component. The non-trend component involves a smooth GP component
\(\widehat{\zeta}(\mathbf{x}_i)\) and, optionally, a nugget or noise
component \(\widehat{\varepsilon}(\mathbf{x}_i)\) or
\(\widehat{\varepsilon}_i\).

	Fit Find estimates of the parameters, including the covariance
parameters. Several methods are implemented, all relying on the
optimization of a function of the covariance
parameters called the objective. This objective can
relates to frequentist estimation methods:
Maximum-Likelihood (ML) and Leave-One-Out
Cross-Validation. It can also be a Bayesian Marginal Posterior
Density, in relation with specific priors, in which case
the estimate will be a Maximum A Posteriori (MAP). Mind that in
libKriging only point estimates will be given for the
correlation parameters.

	Update Update a model object by processing \(n^\star\) new
observations. Once this step is achieved, the predictions will be
based on the full set of \(n + n^\star\) observations. The covariance
parameters can optionally be updated by using the new observations
when computing the fitting objective.

	Predict Given \(n^\star\) “new” inputs \(\mathbf{x}^\star_i\)
forming the rows of a matrix \(\mathbf{X}^\star\), compute the
Gaussian distribution of \(\mathbf{y}^\star\) conditional on
\(\mathbf{y}\). As long as the covariance parameters are regarded as
known, the conditional distribution is Gaussian, and is
characterized by its expectation vector and its covariance
matrix. These are often called the Kriging mean and the Kriging
covariance.

	Simulate Given \(n^\star\) “new” inputs \(\mathbf{x}^\star_i\)
forming the rows of a matrix \(\mathbf{X}^\star\), draw a sample of
\(n_{\texttt{sim}}\) vectors \(\mathbf{y}^\star\) \(k=1\), \(\dots\),
\(n_{\texttt{sim}}\) from the distribution of \(y(\mathbf{x})\)
conditional on the observations.

By “Kriging” one often means the prediction step. The fit step is
generally the most costly one in terms of computation because the fit
objective has to be evaluated repeatedly (say dozens of times) and
each evaluation involves \(O(n^3)\) elementary operations.

Footnotes

Trend functions in Kriging models

The possible trend functions in libKriging are as follow, by increasing
level of complexity.

	The constant trend involves \(p = 1\) coefficient and
\(\mathbf{f}(\mathbf{x})^\top\boldsymbol{\beta} = \beta\).

	The linear trend involves \(p = d +1\) coefficients

\[
 \mathbf{f}(\mathbf{x})^\top \boldsymbol{\beta} = \beta_0 + \sum_{i=1}^d \beta_i \, x_i.
 \]

	The interactive trend involves \(1 + d + d (d-1) /2\)
coefficients

\[
 \mathbf{f}(\mathbf{x})^\top \boldsymbol{\beta} = \beta_0 +
 \sum_{i=1}^d \sum_{j=1}^{i-1} \beta_{ji} \, x_j x_i.
 \]

	The quadratic trend involves \(p = 1 + d + d(d+1) /2\)
coefficients

\[
 \mathbf{f}(\mathbf{x})^\top \boldsymbol{\beta} = \beta_0 +
 \sum_{i=1}^d \sum_{j=1}^i \beta_{ji} \, x_j x_i.
 \]

Starting from the constant trend, the other forms come by
adding the \(d\) linear terms \(x_i\), adding the \(d \times (d-1) / 2\)
interaction terms \(x_i x_j\) with \(j <i\), and finally adding the
squared input terms \(x_i^2\).

For instance with \(d=3\) inputs the four possible trends are in order
of complexity

\[\begin{split}
\begin{aligned}
 \textsf{constant} \qquad
 & \mathbf{f}(\mathbf{x})^\top
 = [1] \\
 \textsf{linear} \qquad
 & \mathbf{f}(\mathbf{x})^\top
 = [1, \: x_1, \: x_2,\: \:x_3] \\
 \textsf{interaction} \qquad
 & \mathbf{f}(\mathbf{x})^\top
 = [1, \: x_1, \: x_2,\: x_1x_2, \:x_3,\: x_1x_3,\: x_2x_3] \\
 \textsf{quadratic} \qquad
 & \mathbf{f}(\mathbf{x})^\top
 = [1, \: x_1, \: x_1^2, \: x_2,\: x_1x_2, \: x_2^2, \: x_3,\: x_1x_3,\: x_2x_3, \:x_3^2] \\
\end{aligned}
\end{split}\]

Mind that the coefficients relate to a specific order of the inputs.

Note The number of coefficients required in the interactive and quadratic
trend increases quadratically with the dimension. For \(d = 10\) the
quadratic trend involves \(66\) coefficients.

Footnotes

The tensor product kernel

General form

The zero-mean smooth GP \(\zeta(\mathbf{x})\) is characterized by its
covariance kernel \(C_\zeta(\mathbf{x}, \mathbf{x}') :=
\mathbb{E}[\zeta(\mathbf{x}),\, \zeta(\mathbf{x}')]\). libKriging
uses a specific form of covariance kernel
\(C_\zeta(\mathbf{x},\,\mathbf{x}')\) on the input space \(\mathbb{R}^d\) which
can be called tensor-product. With \(\mathbf{h} := \mathbf{x} -
\mathbf{x}'\) the kernel value expresses as

\[
 C_\zeta(\mathbf{x}, \, \mathbf{x}'; \boldsymbol{\theta}, \, \sigma^2) =
 C_\zeta(\mathbf{h}; \boldsymbol{\theta}, \, \sigma^2) =
 \sigma^2 \, \prod_{\ell = 1}^d \kappa(h_\ell / \theta_\ell)
\]

where \(\kappa(h)\) is a stationary correlation kernel on \(\mathbb{R}\)
and \(\boldsymbol{\theta}\) is a vector of \(d\) parameters \(\theta_\ell>
0\) called correlation ranges. See Stein [Ste12] for a
discussion on the tensor product kernel a.k.a. separable kernel.

A further constraint used in libKriging is that \(\kappa(h)\) takes only
positive values: \(\gamma(h) >0\) for all \(h\). With
\(\lambda(h) := - \log \gamma(h)\) the derivative w.r.t. the correlation
range \(\theta_\ell\) can be computed as

\[
 \partial_{\theta_\ell} C_\zeta(\mathbf{h};\,\boldsymbol{\theta}) =
 \theta_\ell^{-2} \, \lambda'(h_{\ell} / \theta_\ell) \,
 C_\zeta(\mathbf{h};\,\boldsymbol{\theta}).
\]

Available 1D correlation kernels

The 1D correlation kernels available are listed in the Table below.
Remind that in this setting the smoothness of the paths of the GP
\(\zeta(\mathbf{x})\) is controlled by the smoothness of the kernel
\(C_\zeta(\mathbf{h})\) at \(\mathbf{h} = \mathbf{0}\) hence by the smoothness
of the correlation kernel \(\kappa(h)\) for \(h=0\). Note that the 1D
exponential kernel is not differentiable at \(h = 0\) and the
corresponding paths are continuous but nowhere differentiable. The
kernels are given in the table by order of increasing smoothness.

Note The Gaussian kernel is a radial kernel in the sense that it
depends on \(\mathbf{h}\) only through its square norm \(\sum_\ell
h_\ell^2 / \theta_\ell^2\).

	kernel

	Name

	Expression

	"exp"

	Exponential

	\(\kappa(h) = \exp\{-\lvert h \rvert \}\)

	"matern3_2"

	Matérn whith shape \(3/2\)

	\(\kappa(h) = [1 + z] \exp\{-z\}\), \(z := \sqrt{3} \, \lvert h \rvert\)

	"matern5_2"

	Matérn whith shape \(5/2\)

	\(\kappa(h) = [1 + z + z^2/3] \exp\{-z\}\), \(z := \sqrt{5} \, \lvert h \rvert\)

	"gauss"

	Gaussian

	\(\kappa(h) = \exp\{-h^2/2\}\)

Footnotes

Parameters

The parameters of the models are given in the Table below. Note that
the trend parameters in \(\boldsymbol{\beta}\) are of a somewhat
different nature than the other ones. The parameters \(\beta_k\) can
best be compared to the values \(\zeta(\mathbf{x}_i)\) of the unobserved
GP. Indeed if no nugget or noise is used, the estimation of
\(\boldsymbol{\beta}\) is the same thing as the estimation of
\(\boldsymbol{\zeta}\).

The trend parameters \(\beta_j\) never appear in the objective function
used to fit the models, be it of frequentist or Bayesian nature.

	

	Trend

	GP Cov

	Noise/Nug.

	Optim

	"Kriging"

	\(\boldsymbol{\beta}\)

	\([\boldsymbol{\theta}, \, \sigma^2]\)

	

	\(\boldsymbol{\theta}\)

	"NuggetKriging"

	\(\boldsymbol{\beta}\)

	\([\boldsymbol{\theta}, \, \sigma^2]\)

	\(\tau^2\)

	\([\boldsymbol{\theta}, \,\alpha]\), \(\alpha:=\sigma^2/(\sigma^2 + \tau^2)\)

	"NoiseKriging"

	\(\boldsymbol{\beta}\)

	\([\boldsymbol{\theta}, \, \sigma^2]\)

	\([\tau_i^2]\)

	\([\boldsymbol{\theta}, \, \sigma^2]\)

Parameters used for the trend, the smooth GP
and the noise or nugget parts. The column Optim is for
the parameters used in the optimization. The other parameters are
either known as \([\tau_i^2]\) or marginalized out, or replaced by
their MLE e.g. for \(\boldsymbol{\beta}\).

Functional point of view

For the models used with libKriging, both the trend functions and
the covariance kernel have an impact. While a GP model for
\(\zeta(\mathbf{x})\) relates to a covariance kernel and to the
corresponding Reproducing Kernel Hilbert Space (RKHS), a Kriging model
as described in Kriging models relates to a semi-RKHS
Berlinet and Thomas-Agnan [BTA04]. This space \(\mathcal{H}\) is a
semi-Hilbert space of functions in which the trend functions \(f_k\)
generate a finite-dimensional linear subspace \(\mathcal{F}\) called the
nullspace which contains so-called unpenalized functions i.e.,
functions with (semi) norm zero.

When the covariance parameters are known, Kriging provides as the
Kriging mean the function \(h \in \mathcal{H}\) which minimises the
Penalized Sum of Squares (PSS) criterion

\[
 \label{eq:PSS}
 \texttt{PSS} := \frac{1}{\tau^2} \,
 \sum_{i=1}^n \{y_i - h(\mathbf{x}_i)\}^2 + \| h \|_{\mathcal{H}}^2.
\]

In the case where no nugget is used (corresponding to \(\tau^2 \to 0\)),
the discrete sum in the \(\texttt{PSS}\) criterion is actually zero at the
optimum so that \(h\) interpolates the data and has minimal norm
\(\|.\|_{\mathcal{H}}\) amongst the functions \(h \in \mathcal{H}\) that
interpolates the data. We may regard Kriging as using a prior on a
functional space, with an implied non-informative prior for the trend
part. At the right-hand side of the equation above, the first term can be
regarded as \(-2 \log L\) where \(L\) is the likelihood while the square
norm can formally be regarded as \(-2 \log \pi(h)\) where
\(\pi(h)\) is a prior density, although this is not tenable from a
theoretical point of view. By minimizing \(\texttt{PSS}\), we get the
function \(h\) with maximum posterior density which is also the
posterior mean.

The Kriging framework is similar to the splines framework, but as
opposed to the later one, the trend functions are chosen quite
arbitrarily and may also belong to the RKHS of the kernel. This will
indeed be the case when \(d=1\) and a constant trend is used with one of
the kernels available in libKriging: the constant trend function
is therefore unpenalized, which makes the Kriging smoothing and the
Kriging prediction behave well w.r.t. a translation of the
observations \(\mathbf{y} \to \mathbf{y} + \text{Cst}\): the predicted
values are then translated similarly. The function \(h \in \mathcal{H}\)
minimizing the criterion \(\texttt{PSS}\) above can be written in a
non-unique way as

\[
h(\mathbf{x}) = \sum_{i=1}^n \alpha_i \, C(\mathbf{x}_i, \, \mathbf{x})
+ \sum_{k=1}^p \beta_k f_k(\mathbf{x}),
\]

and Kriging indeeds find suitable vectors \(\boldsymbol{\alpha}\) and
\(\boldsymbol{\beta}\). The representation of \(h\) can be made unique by
imposing orthogonality constraints, see The Bending Energy Matrix. See
Wahba [Wah78] and O'Hagan [OHagan78] for the use of
an improper prior on the coefficients of the trend functions.

Note Allowing for a non-informative trend has an important
implication in terms of implementation since Universal Kriging
equations must be used. By contrast, an informative trend can be
coped with by using only Simple Kriging equations and sum of
kernels. Indeed the informative trend corresponds to a kernel of the
form \(\mathbf{f}(\mathbf{x})^\top \mathbf{A}\mathbf{f}(\mathbf{x})\)
where \(\mathbf{A}\) is a \(p \times p\) positive definite matrix. The
informative approach is most often retained in the Machine Learning
community.

Footnotes

Trend estimation

Generalized Least Squares

Using \(n\) given observations \(y_i\), we can estimate the trend at the
inputs \(\mathbf{x}_i\). For that aim we must find an estimate
\(\widehat{\boldsymbol{\beta}}\) of the unknown vector
\(\boldsymbol{\beta}\). When no nugget or noise is used, the GP part
comes as the difference \(\widehat{\boldsymbol{\zeta}} = \mathbf{y} -
\mathbf{F}\widehat{\boldsymbol{\beta}}\). When instead a nugget or a
noise is present a further step is needed to separate the smooth GP
part from the nugget or noise in \(\mathbf{y} -
\mathbf{F}\widehat{\boldsymbol{\beta}}\).

If the covariance parameters are known, the estimate
\(\widehat{\boldsymbol{\beta}}\) can be obtained by using General Least
Squares (GLS); this estimate is also the Maximum Likelihood estimate.
The computations related to GLS can rely on the Cholesky and the QR
decompositions of matrices as now detailed.

The "Kriging" case

In the "Kriging" case, we have \(\mathbf{C} = \sigma^2 \mathbf{R}\) where
\(\mathbf{R}\) is the correlation matrix depending on \(\boldsymbol{\theta}\). If the
correlation matrix \(\mathbf{R}\) is known, then the ML estimate of
\(\boldsymbol{\beta}\) and its covariance are given by

\[
 \widehat{\boldsymbol{\beta}} = \left[\mathbf{F}^\top \mathbf{R}^{-1}
 \mathbf{F}\right]^{-1}
 \mathbf{F}^\top \mathbf{R}^{-1}\mathbf{y}, \qquad
 \textsf{Cov}(\widehat{\boldsymbol{\beta}}) = \sigma^2 [\mathbf{F}^\top
 \mathbf{R}^{-1}\mathbf{F}]^{-1}.
\]

Moreover the ML estimate \(\widehat{\sigma}^2\) is available as well.

In practice we can use the Cholesky decomposition
\(\mathbf{R} = \mathbf{L}\mathbf{L}^\top\) where \(\mathbf{L}\) is a \(n \times n\) lower
triangular matrix with positive diagonal elements. By
left-multiplying the relation \(\mathbf{y} = \mathbf{F}\boldsymbol{\beta} + \boldsymbol{\zeta}\)
by \(\mathbf{L}^{-1}\), we get

\[
 \mathbf{y}^\dagger = \mathbf{F}^\dagger\boldsymbol{\beta} +
 \boldsymbol{\zeta}^\dagger
\]

where the “dagged” symbols indicate a left multiplication by
\(\mathbf{L}^{-1}\) e.g.,
\(\mathbf{y}^\dagger=\mathbf{L}^{-1}\mathbf{y}\). We get a standard
linear regression with i.i.d. Gaussian errors
\(\boldsymbol{\zeta}_i^\dagger\) having zero mean and variance
\(\sigma^2\). So the ML estimates \(\widehat{\boldsymbol{\beta}}\) and
\(\widehat{\sigma}^2\) come by Ordinary Least Squares. Using
\(\widehat{\boldsymbol{\zeta}} = \mathbf{y} -
\mathbf{F}\widehat{\boldsymbol{\beta}}\) and
\(\boldsymbol{\zeta}^\dagger :=
\mathbf{L}^{-1}\widehat{\boldsymbol{\zeta}}\) we have

\[
 \widehat{\sigma}^2_{\texttt{ML}} = \frac{1}{n} \,S^2, \quad\text{with}\quad
 S^2 := \widehat{\boldsymbol{\zeta}}^{\dagger\top}\widehat{\boldsymbol{\zeta}}^\dagger
 = \widehat{\boldsymbol{\zeta}}^\top\mathbf{R}^{-1}\widehat{\boldsymbol{\zeta}}.
\]

Note that \(\widehat{\sigma}^2_{\texttt{ML}}\) is a biased estimate of
\(\sigma^2\). An alternative unbiased estimate can be obtained by using
\(n-p\) instead of \(n\) as the denominator: this is the so-called
Restricted Maximum Likelihood (REML) estimate.

The computations rely on the so-called “thin” or “economical” QR
decomposition of the transformed trend matrix \(\mathbf{F}^\dagger\)

\[
 \mathbf{F}^\dagger = \mathbf{Q}_{\mathbf{F}^\dagger} \mathbf{R}_{\mathbf{F}^\dagger}
\]

where \(\mathbf{Q}_{\mathbf{F}^\dagger}\) is a \(n \times p\) orthogonal matrix and
\(\mathbf{R}_{\mathbf{F}^\dagger}\) is a \(p \times
p\) upper triangular matrix. The orthogonality means that
\(\mathbf{Q}_{\mathbf{F}^{\dagger}}^\top\mathbf{Q}_{\mathbf{F}^\dagger}= \mathbf{I}_p\).
The estimate \(\widehat{\boldsymbol{\beta}}\)
comes by solving the
triangular system \(\mathbf{R}_{\mathbf{F}^\dagger}\boldsymbol{\beta} =
\mathbf{Q}_{\mathbf{F}^\dagger}^\top \mathbf{y}^\dagger\), and the
covariance of the estimate is
\(\textsf{Cov}(\widehat{\boldsymbol{\beta}}) =
\mathbf{R}_{\mathbf{F}^\dagger}^{-1}
\mathbf{R}_{\mathbf{F}^\dagger}^{-\top}\)

Following a popular linear regression trick, one can further use the
QR decomposition of the matrix \(\mathbf{F}^\dagger_+\) obtained by adding a
new column \(\mathbf{y}^\dagger\) to \(\mathbf{F}^\dagger\)

\[
\mathbf{F}^\dagger_+ := \left[\mathbf{F}^\dagger \, \vert \, \mathbf{y}^\dagger \right]
= \mathbf{Q}_{\mathbf{F}^\dagger_+}\mathbf{R}_{\mathbf{F}^\dagger_+}.
\]

Then the \(p+1\) column of \(\mathbf{Q}_{\mathbf{F}^\dagger_+}\) contains
the vector of residuals \(\widehat{\boldsymbol{\zeta}}^\dagger =
\mathbf{y}^\dagger - \mathbf{F}^\dagger \widehat{\boldsymbol{\beta}}\)
in its first \(p\) elements and the residual sum of squares is given by
the square of the element \(R_{\mathbf{F}^\dagger_+}[p + 1, p +1]\). See
Lange [Lan10].

"NuggetKriging" and "NoiseKriging"

When a nugget or noise term is used, the estimate of \(\boldsymbol{\beta}\) can
be obtained as above provided that the covariance matrix is that of
the non-trend component hence includes the nugget or noise variance in
its diagonal. In the NuggetKriging case the GLS will provide an
estimate of the variance \(\nu^2 = \sigma^2 + \tau^2\) but the ML
estimate of \(\sigma^2\) can only be obtained by using a numerical
optimization providing the ML estimate of \(\alpha\) from which the
estimate of \(\sigma^2\) is found.

The Bending Energy Matrix

Since \(\widehat{\boldsymbol{\beta}}\) is a linear function of
\(\mathbf{y}\) we have

\[
 [\mathbf{y} - \mathbf{F}\widehat{\boldsymbol{\beta}}]^\top \mathbf{C}^{-1}
 [\mathbf{y} - \mathbf{F}\widehat{\boldsymbol{\beta}}] =
 \mathbf{y}^\top \mathbf{B} \mathbf{y}
\]

where the \(n \times n\) matrix \(\mathbf{B}\) called the Bending Energy
Matrix (BEM) is given by

\[
 \mathbf{B} = \mathbf{C}^{-1} - \mathbf{C}^{-1}\mathbf{F} \left[\mathbf{F}^\top \mathbf{C}^{-1} \mathbf{F} \right]^{-1}
 \mathbf{F}^\top\mathbf{C}^{-1}.
\]

The \(n \times n\) matrix \(\mathbf{B}\) is such that
\(\mathbf{B}\mathbf{F} = \mathbf{0}\) which means that the columns of
\(\mathbf{F}\) are eigenvectors of \(\mathbf{B}\) with eigenvalue \(0\). If
\(\mathbf{C}\) is positive definite and \(\mathbf{F}\) has full column rank
as assumed, then \(\mathbf{B}\) has rank \(n- p\).

In the special case where no trend is used i.e., \(p=0\) the bending
energy matrix can consistently be defined as \(\mathbf{B} := \mathbf{C}^{-1}\),
the trend matrix \(\mathbf{F}\) then being a matrix with zero columns and the
vector \(\boldsymbol{\beta}\) being of length zero.

The BEM matrix is closely related to smoothing since the trend
and GP component of \(\mathbf{y}\) are given by

\[
 \mathbf{y} =
 \underset{\text{trend}}
 {\underbrace{\widehat{\boldsymbol{\mu}}}} +
 \underset{\text{GP}}
 {\underbrace{\widehat{\boldsymbol{\eta}}}}
 = [\mathbf{I}_n - \mathbf{C}\mathbf{B}] \, \mathbf{y} + \mathbf{C}\mathbf{B} \, \mathbf{y}.
\]

The matrix \(\mathbf{I}_n - \mathbf{C}\mathbf{B}\) is the matrix of the orthogonal
projection on the linear space spanned by the columns of \(\mathbf{F}\) in
\(\mathbb{R}^n\) equipped with the inner product
\(\langle\mathbf{z},\,\mathbf{z}'\rangle_{\mathbf{C}^{-1}} := \mathbf{z}^\top \mathbf{C}^{-1}\mathbf{z}'\).

Note The BEM does not depend on the specific basis used to define the
linear space of trend functions. It also depends on the kernel only
through the reduced kernel related to the trend linear
space, see Pronzato [Pro19]. So the eigen-decomposition of the BEM
provides useful insights into the model used such as the so-called
Principal Kriging Functions

The BEM \(\mathbf{B}\) can be related to the matrices \(\mathbf{C}\) and \(\mathbf{F}\) by
a block inversion

\[\begin{split}
 \begin{bmatrix}
 \mathbf{C} & \mathbf{F}\\
 \mathbf{F}^\top & \mathbf{0}
 \end{bmatrix}^{-1}
 =
 \begin{bmatrix}
 \mathbf{B} & \mathbf{U}\\
 \mathbf{U}^\top & \mathbf{V}
 \end{bmatrix}
 \qquad \text{with }
 \left\{
 \begin{aligned}
 \mathbf{V} &:= - [\mathbf{F}^\top\mathbf{C}^{-1}\mathbf{F}]^{-1}\\
 \mathbf{U} &:= - \mathbf{C}^{-1}\mathbf{F}\mathbf{V}
 \end{aligned}
 \right.
\end{split}\]

where the inverse exists provided that \(\mathbf{F}\) has full column rank,
the kernel being assumed to be definite positive.

The relation can be derived by using the so-called kernel shift
functions \(\mathbf{x} \mapsto C(\mathbf{x}, \, \mathbf{x}_i)\) to
represent the GP component of \(y(\mathbf{x})\) in the Kriging mean
function

\[
h(\mathbf{x}) =
\underset{\text{GP}}
{\underbrace{\sum_{i=1}^n \alpha_i \, C(\mathbf{x}_i, \, \mathbf{x})}}
+
\underset{\text{trend}}
{\underbrace{\sum_{k=1}^p \beta_k f_k(\mathbf{x})}}.
\]

In the case where the model has no nugget or noise, using the \(n\)
observations \(y_i\) we can find the \(n + p\) unknown coefficients
\(\alpha_i\) and \(\beta_k\) by imposing the orthogonality constraints
\(\mathbf{F}^\top\boldsymbol{\alpha} = \mathbf{0}_p\), leading to the
linear system

\[\begin{split}
 \begin{bmatrix}
 \mathbf{C} & \mathbf{F}\\
 \mathbf{F}^\top & \mathbf{0}
 \end{bmatrix}
 \begin{bmatrix}
 \boldsymbol{\alpha}\\
 \boldsymbol{\beta}
 \end{bmatrix} =
 \begin{bmatrix}
 \mathbf{y}\\
 \mathbf{0}
 \end{bmatrix},
\end{split}\]

see Mardia et al. [MKGL96].

It turns out that the trend part of the solution is then identical
to the GLS estimate \(\widehat{\boldsymbol{\beta}}\).

If \(n^\star\) “new” inputs \(\mathbf{x}^\star_j\) are given in a matrix
\(\mathbf{X}^\star\), then with \(\mathbf{C}^\star :=
\mathbf{C}(\mathbf{X}^\star, \, \mathbf{X})\) and \(\mathbf{F}^\star
:=\mathbf{F}(\mathbf{X}^\star)\) the prediction writes in blocks form
as

\[\begin{split}
 \widehat{\mathbf{y}}^\star =
 \begin{bmatrix}
 \mathbf{C}^\star & \mathbf{F}^\star
 \end{bmatrix}
 \begin{bmatrix}
 \widehat{\boldsymbol{\alpha}} \\
 \widehat{\boldsymbol{\beta}}
 \end{bmatrix} =
 \begin{bmatrix}
 \mathbf{C}^\star & \mathbf{F}^\star
 \end{bmatrix}
 \begin{bmatrix}
 \mathbf{B} & \mathbf{U}\\
 \mathbf{U}^\top & \mathbf{V}
 \end{bmatrix}
 \begin{bmatrix}
 \mathbf{y} \\
 \mathbf{0}
 \end{bmatrix}.
\end{split}\]

Footnotes

Prediction and simulation

Framework

Consider first the cases where the observations \(y_i\) are from a
stochastic process \(y(\mathbf{x})\) namely the Kriging and the
NuggetKriging cases. Consider \(n^\star\) “new” inputs
\(\mathbf{x}_j^\star\) given as the rows of a \(n^\star \times d\) matrix
\(\mathbf{X}^\star\) and the random vector of “new” responses
\(\mathbf{y}^\star := [y(\mathbf{x}_1^\star), \, \dots, \,
y(\mathbf{x}_{n^\star}^\star)]^\top\). The distribution of
\(\mathbf{y}^\star\) conditional on the observations \(\mathbf{y}\) is
known: this is a Gaussian distribution, characterized by its mean
vector and its covariance matrix

\[
 \mathbb{E}[\mathbf{y}^\star \, \vert \, \mathbf{y}] \quad \text{and} \quad
	\textsf{Cov}[\mathbf{y}^\star \, \vert \, \mathbf{y}].
\]

The computation of this distribution is often called Kriging, and
more precisely Universal Kriging when a linear trend
\(\mu(\mathbf{x}) = \mathbf{f}(\mathbf{x})^\top \boldsymbol{\beta}\) and
a smooth unobserved GP \(\zeta(\mathbf{x})\) are used, possibly with a
nugget GP \(\varepsilon(\mathbf{x})\). Interestingly, the computation
can provide estimates \(\widehat{\mu}(\mathbf{x})\),
\(\widehat{\zeta}(\mathbf{x})\) and \(\widehat{\varepsilon}(\mathbf{x})\)
for the unobserved components: trend, smooth GP and nugget.

In the noisy case "NoiseKriging”, the observations \(y_i\) are noisy
versions of the “trend \(+\) GP” process \(\eta(\mathbf{x}) :=
\mu(\mathbf{x}) + \zeta(\mathbf{x})\). Under the assumption that the
\(\varepsilon_i\) are Gaussian, the distribution of the random vector
\(\boldsymbol{\eta}^\star := [\eta(\mathbf{x}_1^\star), \, \dots, \,
\eta(\mathbf{x}_{n^\star}^\star)]^\top\) conditional on the
observations \(\mathbf{y}\) is a Gaussian distribution, characterized by
its mean vector and its covariance matrix that can be computed by
using the same Kriging equations as for the previous cases.

	The predict method will provide the conditional expectation
\(\mathbb{E}[\mathbf{y}^\star \, \vert \, \mathbf{y}]\) or
\(\mathbb{E}[\boldsymbol{\eta}^\star \, \vert \, \mathbf{y}]\) a.k.a the
Kriging mean. The method can also provide the vector of conditional
standard deviations or the conditional covariance matrix which can
be called Kriging standard deviation or Kriging covariance.

	The simulate method generates partial observations from paths
of the process \(\eta(\mathbf{x})\) - or \(y(\mathbf{x})\) in the non
noisy-cases- conditional on the known observations. More precisely,
the method returns the values \(y^{[k]}(\mathbf{x}_j^\star)\) at the
new design points for \(n_{\texttt{sim}}\) independent drawings
\(k=1\), \(\dots\), \(n_{\texttt{sim}}\) of the process conditional on
the observations \(y_i\) for \(i=1\), \(\dots\), \(n\). So if
\(n_{\texttt{sim}}\) is large the average \(n_{\texttt{sim}}^{-1}\,
 \sum_{k=1}^{n_{\text{sim}}} y^{[k]}(\mathbf{x}^\star_j)\) should be
close to the conditional expectation given by the predict method.

In order to give more details on the prediction, the following
notations will be used.

	\(\mathbf{F}^\star := \mathbf{F}(\mathbf{X}^\star)\) is the “new” trend matrix with
dimension \(n^\star \times p\).

	\(\mathbf{C}^\star := \mathbf{C}(\mathbf{X}^\star,\, \mathbf{X})\) is the
\(n^\star \times n\) covariance matrix between the new and the observation
inputs. When \(n^\star=1\) we have row matrix.

	\(\mathbf{C}^{\star\star} := \mathbf{C}(\mathbf{X}^\star,\, \mathbf{X}^\star)\) is the
\(n^\star \times n^\star\) covariance matrix for the new inputs.

We will assume that the design matrix \(\mathbf{F}\) used in the first
step has rank \(p\), implying that \(n \geqslant p\) observations are
used.

The Kriging prediction

Non-noisy cases Kriging and NuggetKriging

If the covariance kernel is known, the Kriging mean is given by

\[
 \mathbb{E}[\mathbf{y}^\star \, \vert \,\mathbf{y}] =
 \underset{\text{trend}}
 {\underbrace{\mathbf{F}^\star\widehat{\boldsymbol{\beta}}}} +
 \underset{\text{GP}}
 {\underbrace{\mathbf{C}^\star\mathbf{C}^{-1} [\mathbf{y} -
 \mathbf{F}\widehat{\boldsymbol{\beta}}]}},
\]

where \(\widehat{\boldsymbol{\beta}}\) stands for the GLS estimate of
\(\boldsymbol{\beta}\). At the right-hand side the first term is the
prediction of the trend and the second term is the simple Kriging
prediction for the GP part \(\boldsymbol{\zeta}^\star\) where the
estimation \(\widehat{\boldsymbol{\zeta}} = \mathbf{y} -
\mathbf{F}\widehat{\boldsymbol{\beta}}\) is used as if it was
containing the unknown observations \(\boldsymbol{\zeta}\). The Kriging
covariance is given by

\[
 \textsf{Cov}[\mathbf{y}^\star \, \vert \,\mathbf{y}] =
 \underset{\text{trend}}
 {\underbrace{[\mathbf{F}^\star -
 \widehat{\mathbf{F}}^\star] \,\textsf{Cov}(\widehat{\boldsymbol{\beta}})\,
 [\mathbf{F}^\star - \widehat{\mathbf{F}}^\star]^\top}} +
 \underset{\text{GP}}
 {\underbrace{
 \mathbf{C}^{\star\star} -
	 \mathbf{C}^\star \mathbf{C}^{-1} \mathbf{C}^{\star\top}}},
\]

where \(\widehat{\mathbf{F}}^\star := \mathbf{C}^\star
\mathbf{C}^{-1}\mathbf{F}\) is the simple Kriging prediction of the
trend matrix. At the right-hand side, the first term accounts for the
uncertainty due to the trend. It disappears if the estimation of
\(\boldsymbol{\beta}\) is perfect or if the trend functions are
perfectly predicted by Kriging. The second and third terms are the
unconditional covariance of the GP part and the (co)variance reduction
due to to the correlation of the GP between the observations and the
new inputs.

Note The conditional covariance can be expressed as

\[\begin{split}
\textsf{Cov}[\mathbf{y}^\star \, \vert \,\mathbf{y}] = \mathbf{C}^{\star\star} -
\begin{bmatrix}
 \mathbf{C}^\star & \mathbf{F}^\star
\end{bmatrix}
	\begin{bmatrix}
\mathbf{C} & \mathbf{F}\\
\mathbf{F}^\top & \mathbf{0}
\end{bmatrix}^{-1}
\begin{bmatrix}
\mathbf{C}^{\star\top}\\
	\mathbf{F}^{\star\top}
\end{bmatrix}.
\end{split}\]

The block square matrix to be inverted is not positive hence its
inverse is not positive either. So the prediction covariance can be
larger than the conditional covariance \(\mathbf{C}^{\star\star}\) of the
GP. This is actually the case in the classical linear regression
framework corresponding to the GP \(\zeta(\mathbf{x})\) being a white
noise.

Note Since a stationary GP \(\zeta(\mathbf{x})\) is used in the
model, the “Kriging prediction” returns to the trend: for a new
input \(\mathbf{x}^\star\) which is far away from the inputs used to
fit the model, the prediction \(\widehat{y}(\mathbf{x}^\star)\) tends
to the estimated trend \(\mathbf{f}(\mathbf{x}^\star)^\top
 \widehat{\boldsymbol{\beta}}\).

Noisy case NoiseKriging

In the noisy case we compute the expectation and covariance of
\(\boldsymbol{\eta}^\star\) conditional on the observations in
\(\mathbf{y}\). The formulas are identical to those used for
\(\mathbf{y}^\star\) above. The matrices \(\mathbf{C}^\star\) and
\(\mathbf{C}^{\star\star}\) relate to the covariance kernel of the GP
\(\eta(\mathbf{x})\) yet for the matrix \(\mathbf{C}\), the provided noise
variances \(\sigma^2_i\) must be added to the corresponding diagonal
terms.

Plugging the covariance parameters into the prediction

In libKriging the prediction is computed by plugging the
correlation parameters \(\boldsymbol{\theta}\) i.e., by replacing these
by their estimate obtained by optimizing the chosen objective:
log-likelihood, Leave-One-Out Sum of Squared Errors, or marginal
posterior density. So the ranges \(\theta_\ell\) are regarded as
perfectly known. Similarly the GP variance \(\sigma^2\) and and the
nugget variance \(\tau^2\) are replaced by their estimates.

Note Mind that the expression predictive distribution used in
Gu et al. [GWB18] is potentially misleading since the
correlation parameters are simply plugged into the prediction
instead of being marginalized out of the distribution of
\(\mathbf{y}^\star\) conditional on \(\mathbf{y}\).

Confidence interval on the Kriging mean

Consistently with the non-parametric regression framework \(y =
h(\mathbf{x}) + \varepsilon\) where \(h\) is a function that must be
estimated, we can speak of a confidence interval on the unknown mean
at a “new” input point \(\mathbf{x}^\star\). It must be understood that
the confidence interval is on the smooth part “trend \(+\) smooth
GP” \(h(\mathbf{x}^\star) = \mu(\mathbf{x}^\star) +
\zeta(\mathbf{x}^\star)\) of the stochastic process regarded as an
unknown deterministic quantity. The “trend \(+\) smooth GP” model
provides a prior for the unknown function \(h\) and the posterior
distribution for \(h(\mathbf{x}^\star)\) is the Gaussian distribution
provided by the Kriging prediction.

Some variants of the confidence interval can easily be implemented. In
the Kriging case here no nugget or noise is used, the maximum
likelihood estimate of \(\sigma^2\) is biased but the restricted
maximum-likelihood estimate \(\widehat{\sigma}_{\texttt{REML}}^2 =
\widehat{\sigma}_{\texttt{ML}}^2 \times n/ (n-p)\) is unbiased. Also
the quantiles of the Student distribution with \(n-p\) degree of freedom
can be used in place of those of the normal distribution to account
for the uncertainty on \(\sigma^2\). The same ideas can be used for the
 "NuggetKriging" and "NoiseKriging" cases.

Derivative w.r.t. the input

The derivative (or gradient) of the prediction mean and of the
standard deviation vector with respect to the input vector
\(\mathbf{x}^\star\) can be optionally provided. These derivatives are
required in Bayesian Optimization. The derivatives are obtained by
applying the chain rule to the expressions for the expectation and the
variance.

Footnotes

Maximum likelihood

General form of the likelihood

The general form of the likelihood is

\[
 L(\boldsymbol{\psi}, \, \boldsymbol{\beta}; \, \mathbf{y})
 = \frac{1}{\left[2 \pi\right]^{n/2}} \,
 \frac{1}{|\mathbf{C}|^{1/2}} \,
 \exp\left\{
 -\frac{1}{2}
 \left[\mathbf{y} - \mathbf{F}\boldsymbol{\beta} \right]^\top \mathbf{C}^{-1}
 \left[\mathbf{y} - \mathbf{F}\boldsymbol{\beta} \right]
 \right\}
\]

where \(\boldsymbol{\psi}\) is the vector of covariance parameters which
depend on the specific Kriging model used, see the section
Parameters. The notation \(|\mathbf{C}|\) is for the
determinant of the matrix \(\mathbf{C}\).

Profile likelihood

In the ML framework it turns out that at least the ML estimate
\(\widehat{\boldsymbol{\beta}}\) of the trend coefficient vector can be
computed by GLS as exposed in Section Generalized Least Squares. Moreover the GLS
step can provide an estimate of the variance for the non-trend part
component i.e., the difference between the response and the trend
part. See Roustant et al. [RGD12].

This allows the maximization of a profile likelihood function
\(L_{\texttt{prof}}\) depending on a smaller number of parameters. In
practice the log-likelihood \(\ell := \log L\) and the log-profile
likelihood \(\ell_{\texttt{prof}} := \log L_{\texttt{prof}}\) are
used. The profile log-likelihood functions are detailed and summarized
in the Table below.

Remind that if we replace \(\boldsymbol{\beta}\) by its estimate
\(\widehat{\boldsymbol{\beta}}\) in the sum of squares used in the
log-likelihood, we get a quadratic form of \(\mathbf{y}\)

\[
 \left[\mathbf{y} - \mathbf{F}\widehat{\boldsymbol{\beta}} \right]^\top
 \mathbf{C}^{-1}
 \left[\mathbf{y} - \mathbf{F}\widehat{\boldsymbol{\beta}} \right] =
 \mathbf{y}^\top \mathbf{B} \mathbf{y}
\]

where \(\mathbf{B}\) is the Bending Energy Matrix (BEM).

"Kriging"

In the "Kriging" case where \(\mathbf{C} = \sigma^2 \,
\mathbf{R}(\boldsymbol{\theta})\), both the ML estimates
\(\widehat{\boldsymbol{\beta}}\) and \(\widehat{\boldsymbol{\sigma}}^2\)
are provided by GLS. So these parameters are “concentrated out of the
likelihood” and we can use the profile likelihood function depending
on \(\boldsymbol{\theta}\) only \(L_{\texttt{prof}}(\boldsymbol{\theta})
:= L(\boldsymbol{\theta}, \, \widehat{\sigma}^2,\,
\widehat{\boldsymbol{\beta}})\) where both \(\widehat{\sigma}^2\) and
\(\widehat{\boldsymbol{\beta}}\) depend on \(\boldsymbol{\theta}\).

"NuggetKriging"

In the "NuggetKriging" case, beside the vector \(\boldsymbol{\theta}\) of
correlation ranges and instead of the couple of parameters
\([\sigma^2, \, \tau^2]\) or \([\sigma^2, \, \alpha]\) we can use the couple
\([\nu^2,\, \alpha]\) defined by

\[
\nu^2:= \sigma^2 + \tau^2, \quad \alpha := \sigma^2 / \nu^2
\]

and which can be named the total variance and the variance ratio.
The covariance matrix used in the
likelihood is then

\[
\mathbf{C} = \sigma^2 \mathbf{R}(\boldsymbol{\theta}) + \tau^2 \mathbf{I}
= \nu^2 \left\{\alpha \mathbf{R}(\boldsymbol{\theta}) + (1 - \alpha) \mathbf{I}_n \right\}
= \nu^2 \mathbf{R}_\alpha(\boldsymbol{\theta}),
\]

where \(\mathbf{R}_\alpha\) is a correlation matrix. As for the Kriging
case the ML estimate \(\widehat{\nu}^2\) can be obtained by GLS as
\(\widehat{\nu}^2 = S^2/n\). Therefore we can use a profile likelihood
function depending on the correlation ranges \(\boldsymbol{\theta}\) and
the variance ratio \(\alpha\), namely
\(L_{\texttt{prof}}(\boldsymbol{\theta},\,\alpha) :=
L(\boldsymbol{\theta}, \, \widehat{\nu}^2,\,
\widehat{\boldsymbol{\beta}})\).

"NoiseKriging"

The covariance matrix to be used in the likelihood is

\[
\mathbf{C} = \sigma^2 \mathbf{R}(\boldsymbol{\theta}) + \text{diag}([\tau^2_i])
\]

where the noise variances \(\tau_i^2\) are known. In this case the
parameter \(\sigma^2\) can no longer be concentrated out and the profile
likelihood to be maximized is a function of \(\boldsymbol{\theta}\) and
\(\sigma^2\) with only the trend parameter being concentrated out
\(L_{\texttt{prof}}(\boldsymbol{\theta},\,\sigma^2) := L(\boldsymbol{\theta}, \,
\widehat{\boldsymbol{\beta}})\).

Table

The following table gives the profile log-likelihood for the different
forms of Kriging models. The sum of squares \(S^2\) is given by \(S^2 =
\mathbf{e}^\top \mathring{\mathbf{C}}^{-1} \mathbf{e}\) where
\(\mathbf{e}:= \mathbf{y} - \mathbf{F}\widehat{\boldsymbol{\beta}}\) is
the estimated non-trend component and \(\mathring{\mathbf{C}}\) is the
correlation matrix (equal to \(\mathbf{R}\) or \(\mathbf{R}_\alpha\)).

	

	

	"Kriging"

	\(-2 \ell_{\texttt{prof}}(\boldsymbol{\theta}) = \log \lvert\mathbf{R}\rvert + n \log S^2\)

	"NuggetKriging"

	\(-2 \ell_{\texttt{prof}}(\boldsymbol{\theta}, \, \alpha) = \log \lvert\mathbf{R}_\alpha\rvert + n \log S^2\)

	"NoiseKriging”

	\(-2 \ell_{\texttt{prof}}(\boldsymbol{\theta}, \, \sigma^2) = \log \lvert\mathbf{C}\rvert + \mathbf{e}^\top \mathbf{C}^{-1}\mathbf{e}\)

Note that \(\widehat{\boldsymbol{\beta}}\) and \(\mathbf{e}\) depend
on the covariance parameters as do the correlation or covariance
matrix. The profile log-likelihood are given up to additive constants. The
sum of squares \(S^2\) can be expressed as \(S^2 =
\mathbf{y}^\top \mathring{\mathbf{B}} \mathbf{y}\) where \(\mathring{\mathbf{B}} := \sigma^2 \mathbf{B}\)
is a scaled version ot the Bending Energy matrix \(\mathbf{B}\).

Derivatives w.r.t. the parameters

In the three cases, the symbolic derivatives of the log-profile
likelihood w.r.t. the parameters can be obtained by chain rule hence
be used in the optimization routine.

Footnotes

Leave-one-out

Consider \(n\) observations \(y_i\) from a Kriging model corresponding to
the “Kriging” case with no nugget or noise. For \(i=1\), \(\dots\), \(n\)
let \(\widehat{y}_{i|-i}\) be the prediction of \(y_i\) based on the
vector \(\mathbf{y}_{-i}\) obtained by omitting the observation \(i\) in
\(\mathbf{y}\). The vector of leave-one-out (LOO) predictions is
defined by

\[
 \widehat{\mathbf{y}}_{\mathtt{LOO}} :=
 [\widehat{y}_{1|-1}, \dots, \, \widehat{y}_{n|-n}]^\top,
\]

and the leave-one-out Sum of Square Errors criterion is defined by

\[
 \texttt{SSE}_{\texttt{LOO}} :=
 \sum_{i=1}^n \{ y_i - \widehat{y}_{i|-i} \}^2 =
 \| \mathbf{y} - \widehat{\mathbf{y}}_{\texttt{LOO}} \|^2.
\]

It can be shown that

\[
\mathbf{y} - \widehat{\mathbf{y}}_{\texttt{LOO}} =
\mathbf{D}_{\mathbf{B}}^{-1}\mathbf{B}\,\mathbf{y}
\]

where \(\mathbf{B}\) is the Bending Energy Matrix (BEM)
and \(\mathbf{D}_{\mathbf{B}}\) is the diagonal matrix with the same
diagonal as \(\mathbf{B}\).

By minimizing \(\texttt{SSE}_{\texttt{LOO}}\) with respect to the
covariance parameters \(\theta_\ell\) we get estimates of these. Note
that similarly to the profile likelihood, the LOO MSE does not depend
on the vector \(\boldsymbol{\beta}\) of trend parameters.

An estimate of the GP variance \(\sigma^2\) is given by

\[
 \widehat{\sigma}^2_{\texttt{LOO}} =
 \frac{1}{n} \, \mathbf{y}^\top \mathring{\mathbf{B}}
 \mathbf{D}_{\mathring{\mathbf{B}}}^{-1}
 \mathring{\mathbf{B}} \mathbf{y}
\]

where \(\mathring{\mathbf{B}}:= \sigma^2 \mathbf{B}\) does not depend on
\(\sigma^2\) and \(\mathbf{D}_{\mathring{\mathbf{B}}}\) is the diagonal
matrix having the same diagonal as \(\mathring{\mathbf{B}}\).

The LOO estimation can be preferable to the maximum-likelihood
estimation when the covariance kernel is mispecified, see
Bachoc [Bac12] who provides many details on the
criterion \(\texttt{SSE}_{\texttt{LOO}}\), including its derivatives.

Footnotes

Bayesian marginal analysis

Motivation and general form of prior

Berger, De Oliveira, and Sansó have shown that the
ML estimation of Kriging models often gives estimated ranges
\(\widehat{\theta}_k = 0\) or \(\widehat{\theta}_k = \infty\), leading to
poor predictions. Although finite positive bounds can be imposed in
the optimization to address this issue, the bounds are quite
arbitrary. Berger, De Oliveira, and Sansó have shown
that one can instead replace the ML estimates by the marginal
posterior mode in a Bayesian analysis. Provided that suitable priors
are used, it can be shown that the estimated ranges will be both
finite and positive: \(0 < \widehat{\theta}_k < \infty\).

Note In libKriging the Bayesian approach will be used only to provide
alternatives to the ML estimation of the range or correlation
parameters. The Bayesian inference on these parameters will not be
achieved. Rather than the profile likelihood, a so-called
marginal likelihood will be used.

In this section we switch to a Bayesian style of notations. The vector
of parameters is formed by three blocks: the vector \(\boldsymbol{\theta}\) of
correlation ranges, the GP variance \(\sigma^2\) and the vector
\(\boldsymbol{\beta}\) of trend parameters. A major concern is the elicitation
of the prior density \(\pi(\boldsymbol{\theta}, \, \sigma^2, \,\boldsymbol{\beta})\).

Objective priors of Gu et al

A natural idea is that the prior should not provide information about
\(\boldsymbol{\beta}\), implying the use of improper probability
densities. With the factorization

\[
 \pi(\boldsymbol{\theta}, \, \sigma^2, \,\boldsymbol{\beta}) =
 \pi(\boldsymbol{\beta} \, \vert \, \boldsymbol{\theta}, \,\sigma^2) \times
 \pi(\boldsymbol{\theta}, \, \sigma^2),
\]

a further assumption is that the trend parameter vector \(\boldsymbol{\beta}\)
is a priori independent of the covariance parameters \(\boldsymbol{\theta}\) and
\(\sigma^2\), and that the prior for \(\boldsymbol{\beta}\) is an improper prior
with constant density

\[
 \pi(\boldsymbol{\beta} \, \vert \, \boldsymbol{\theta}, \sigma^2)
 = \pi(\boldsymbol{\beta}) \propto 1.
\]

Then the problem boils down to the choice of the joint prior
\(\pi(\boldsymbol{\theta}, \, \sigma^2)\).

In the case where no nugget or noise is used, an interesting choice is

\[
 \tag{1}
 \pi(\boldsymbol{\theta}, \, \sigma^2) =
 \frac{\pi(\boldsymbol{\theta})}{(\sigma^2)^a}
\]

with \(a >0\). With this specific form the result of the integration of
the likelihood or of the posterior density with respect to \(\sigma^2\)
and \(\boldsymbol{\beta}\) is then known in closed form.

Fit: Bayesian marginal analysis

In the Kriging case, the marginal likelihood
a.k.a. integrated likelihood for \(\boldsymbol{\theta}\) is obtained by
marginalizing the GP variance \(\sigma^2\) and the trend parameter
vector \(\boldsymbol{\beta}\) out of the likelihood according to

\[
 L_{\texttt{marg}}(\boldsymbol{\theta};\,\mathbf{y}) :=
 p(\mathbf{y} \, \vert \, \boldsymbol{\theta}) \propto \int
 p(\mathbf{y} \, \vert \,\boldsymbol{\theta}, \, \sigma^2, \, \boldsymbol{\beta}) \,
 \frac{1}{\sigma^{2a}} \,
 \text{d}\sigma^2\,
 \text{d}\boldsymbol{\beta},
\]

where \(p(\mathbf{y} \, \vert \,\boldsymbol{\theta}, \, \sigma^2, \,
\boldsymbol{\beta})\) is the likelihood \(L(\boldsymbol{\theta}, \,
\sigma^2, \, \boldsymbol{\beta};\, \mathbf{y})\). We get a closed
expression given in the table below. Now for a prior
having the form (1), the marginal posterior factorizes as

\[
 p_{\texttt{marg}}(\boldsymbol{\theta}\,\vert \,\mathbf{y})
	\propto \pi(\boldsymbol{\theta}) \times L_{\texttt{marg}}(\boldsymbol{\theta};\,\mathbf{y}).
\]

In the NuggetKriging case, the same approach can be used, but the
parameter used for the nugget is not marginalized out so it remains an
argument of the marginal likelihood. In libKriging the nugget
parameter is taken as \(\alpha := \sigma^2 / (\sigma^2 + \tau^2)\) where
\(\tau^2\) is the nugget variance. We then have the factorization

\[
 p_{\texttt{marg}}(\boldsymbol{\theta}, \, \alpha \,\vert \,\mathbf{y})
	\propto \pi(\boldsymbol{\theta},\,\alpha) \times L_{\texttt{marg}}(\boldsymbol{\theta},\,\alpha;\,\mathbf{y}).
\]

Note The marginal likelihood differs from the frequentist notion
attached to this name. But it also differs from the marginal
likelihood as often used in the GP community e.g., in
Rasmussen and Williams [RW06] where the
marginalization is for the values \(\boldsymbol{\zeta}\) of the
unobserved GP hence is nothing but the likelihood descrided in this
section.

Table of marginal likelihood functions

The following table gives the marginal log-likelihood for the
different forms of Kriging models. The sum of squares \(S^2\) is given
by \(S^2 := \mathbf{e}^\top \mathring{\mathbf{C}}^{-1} \mathbf{e}\)
where \(\mathbf{e}:= \mathbf{y} -
\mathbf{F}\widehat{\boldsymbol{\beta}}\) and \(\mathring{\mathbf{C}}\) is
the correlation matrix (equal to \(\mathbf{R}\) or
\(\mathbf{R}_\alpha\)). The sum of squares \(S^2\) can be expressed as
\(S^2 = \mathbf{y}^\top \mathring{\mathbf{B}} \mathbf{y}\) where
\(\mathring{\mathbf{B}} := \sigma^2 \mathbf{B}\) is a scaled version ot
the Bending Energy matrix \(\mathbf{B}\).

	

	

	"Kriging"

	\(-2 \ell_{\texttt{marg}}(\boldsymbol{\theta}) = \log \lvert\mathbf{R}\rvert + \log\lvert \mathbf{F}^\top \mathbf{R}^{-1}\mathbf{F}\rvert + (n - p + 2a - 2) \log S^2\)

	"NuggetKriging"

	\(-2 \ell_{\texttt{marg}}(\boldsymbol{\theta}, \, \alpha) = \log \lvert\mathbf{R}_\alpha\rvert + \log\lvert \mathbf{F}^\top \mathbf{R}_\alpha^{-1}\mathbf{F}\rvert + (n - p + 2a -2) \log S^2\)

	"NoiseKriging"

	not used

It can be interesting to compare this table with the table of profile
log-likelihoods.

Reference prior for the correlation parameters [not implemented yet]

For the case when no nugget or noise is used,
Berger, De Oliveira, and Sansó define the reference joint
prior for \(\boldsymbol{\theta}\) and \(\sigma^2\) in relation to the
integrated likelihood where only the trend parameter
\(\boldsymbol{\beta}\) is marginalized out, that is
\(p(\mathbf{y} \, \vert \, \boldsymbol{\theta}, \, \sigma^2) \, = \int
p(\mathbf{y} \, \vert \, \boldsymbol{\theta}, \, \sigma^2, \, \boldsymbol{\beta}) \,
\text{d}\boldsymbol{\beta}\) and they show that it has the form

\[
 \pi_{\texttt{ref}}(\boldsymbol{\theta},\, \sigma^2) %% = \left|\mathbf{I}^\star(\sigma^2,\, \boldsymbol{\theta})\right|^{1/2}
 = \frac{\pi_{\texttt{ref}}(\boldsymbol{\theta})}{\sigma^2}
\]

where \(\pi_{\texttt{ref}}(\boldsymbol{\theta})\) no longer depends on \(\sigma^2\).

We now give some hints on the derivation and the computation of the
reference prior. Let
\(\mathbf{I}^\star(\boldsymbol{\theta},\,\sigma^2)\) be the \((d+1)
\times (d+1)\) Fisher information matrix based on the marginal
log-likelihood \(\ell_{\texttt{marg}}(\boldsymbol{\theta},\,\sigma^2) =
\log L_{\texttt{marg}}(\boldsymbol{\theta},\,\sigma^2)\)

\[\begin{split}
 \mathbf{I}^\star(\boldsymbol{\theta},\, \sigma^2) :=
 \begin{bmatrix}
 -\mathbb{E}\left\{\frac{\partial^2}{\partial \boldsymbol{\theta}\partial \boldsymbol{\theta}^\top}
 \,
 \ell_{\texttt{marg}}(\boldsymbol{\theta}, \,\sigma^2)\right\}
 & -\mathbb{E}\left\{\frac{\partial^2}{\partial \sigma^2\partial \boldsymbol{\theta}^\top}
 \,
 \ell_{\texttt{marg}}(\boldsymbol{\theta}, \,\sigma^2)\right\}\\
 -\mathbb{E}\left\{\frac{\partial^2}{\partial \sigma^2\partial \boldsymbol{\theta}}\,
 \ell_{\texttt{marg}}(\boldsymbol{\theta}, \,\sigma^2)\right\}
 & -\mathbb{E}\left\{\frac{\partial^2 }{\partial \sigma^2\partial \sigma^2}\,
 \ell_{\texttt{marg}}(\boldsymbol{\theta}, \,\sigma^2)\right\}
 \rule{0pt}{1.5em}
 \end{bmatrix} =:
 \begin{bmatrix}
 \mathbf{H} & \mathbf{u}^\top\\
 \mathbf{u} & b
 \end{bmatrix}.
\end{split}\]

One can show that this information matrix can be expressed by using
the \(n \times n\) symmetric matrices \(\mathbf{N}_k := \mathbf{L}^{-1}
\left[\partial_{\theta_k} \mathbf{R}\right] \mathbf{L}^{-\top}\) where
\(\mathbf{L}\) is the lower Cholesky root of the correlation matrix
according to

\[\begin{split}
 \mathbf{H} = \frac{1}{2}\,
 \begin{bmatrix}
 \text{tr}(\mathbf{N}_1\mathbf{N}_1) & \text{tr}(\mathbf{N}_1\mathbf{N}_2)
 & \dots & \text{tr}(\mathbf{N}_1\mathbf{N}_p) \\
 \text{tr}(\mathbf{N}_2\mathbf{N}_1) & \text{tr}(\mathbf{N}_2\mathbf{N}_2)
 & \dots & \text{tr}(\mathbf{N}_2\mathbf{N}_p) \\
 \vdots & \vdots & & \vdots \\
 \text{tr}(\mathbf{N}_p\mathbf{N}_1) & \text{tr}(\mathbf{N}_p\mathbf{N}_2)
 & \dots & \text{tr}(\mathbf{N}_p\mathbf{N}_p)
 \end{bmatrix}, \quad
 \mathbf{u} = \frac{1}{2 \sigma^2}\,
 \begin{bmatrix}
 \text{tr}(\mathbf{N}_1)\\
 \text{tr}(\mathbf{N}_2) \\
 \vdots\\
 \text{tr}(\mathbf{N}_p)
 \end{bmatrix}, \qquad
 b = \frac{n - p}{2 \sigma^4}.
\end{split}\]

By multiplying by \(\sigma^2\) both the last row and the last column of
\(\mathbf{I}^\star(\boldsymbol{\theta}, \, \sigma^2)\) corresponding to
\(\sigma^2\), we get a new \((d+1) \times (d+1)\) matrix say
\(\mathbf{I}^\star(\boldsymbol{\theta})\) which no longer depends on
\(\sigma^2\), the notation \(\mathbf{I}^\star(\boldsymbol{\theta})\) being
consistent with Gu et al. [GWB18]. Then
\(\pi_{\texttt{ref}}(\boldsymbol{\theta}) = \left|
\mathbf{I}^\star(\boldsymbol{\theta}) \right|^{1/2}\).

Note that the determinant expresses as

\[
 \left| \mathbf{I}^\star(\boldsymbol{\theta}) \right|
 = |\mathbf{H}| \times
 \left|n -p - \mathring{\mathbf{u}}^\top \mathbf{H}^{-1}
 \mathring{\mathbf{u}} \right|
\]

where \(\mathring{\mathbf{u}} := \sigma^2 \mathbf{u}\). See Gu [Gu16]
for details.

Note The information matrix takes the blocks in the order:
“\(\boldsymbol{\theta}\) then \(\sigma^2\)”, while the opposite order is used
in Gu [Gu16].

The reference prior suffers from its high computational cost. Indeed,
in order to get the value of the prior density one needs the
derivatives of the correlation matrix \(\mathbf{R}\) and in order to use
the derivatives of the prior to find the posterior mode, the second
order derivatives of \(\mathbf{R}\) are required. An alternative is
the following so-called Jointly robust prior.

The “Jointly Robust” prior of Gu

Gu [Gu19] defines an easily computed prior called the
Jointly Robust (JR) prior. This prior is implemented in the R
package RobustGaSP. In the nugget case the prior is defined with some
obvious abuse of notation by

\[
 \pi_{\texttt{JR}}(\boldsymbol{\theta},\, \sigma^2, \, \alpha) \propto
 \frac{\pi_{\texttt{JR}}(\boldsymbol{\theta}, \, \alpha)}{\sigma^2}
\]

where as above \(\alpha := \sigma^2 / (\sigma^2 + \tau^2)\) so that the
nugget variance ratio \(\eta := \tau^2 / \sigma^2\) of
Gu [Gu19] is \(\eta = (1 - \alpha) / \alpha\). The JR
prior corresponds to

\[
 \pi_{\texttt{JR}}(\boldsymbol{\theta}, \, \alpha) \propto t^{a_{\texttt{JR}}}
 \exp\{ -b_{\texttt{JR}}t\} \qquad
 t := \frac{1 - \alpha}{\alpha} + \sum_{\ell= 1}^d \frac{C_\ell}{\theta_\ell},
\]

where \(a_{\texttt{JR}}> -(d + 1)\) and \(b_{\texttt{JR}} >0\) are two
hyperparameters and \(C_\ell\) is proportional to the range \(r_\ell\) of
the column \(\ell\) in \(\mathbf{X}\)

\[
 C_\ell = n^{-1/d} \times r_\ell, \qquad r_\ell :=
 \max_i\{X_{i\ell}\} -\min_i\{X_{i\ell}\}.
\]

The values of \(a_{\texttt{JR}}\) and \(b_{\texttt{JR}}\) are chosen as

\[
 a_{\texttt{JR}} := 0.2, \qquad b_{\texttt{JR}} :=
 n^{-1/d} \times (a_{\texttt{JR}} + d).
\]

Note that as opposed to the objective prior described above, the JR
prior does not depend on the specific kernel chosen for the
GP. However the integration w.r.t. \(\sigma^2\) and \(\boldsymbol{\beta}\) is the
same as for the reference prior, which means that the marginal
likelihood is the same as for the reference prior above corresponding
to \(a = 1\) in the prior (1) above.

Caution The parameter \(a_{\texttt{JR}}\) is denoted by \(a\) in
Gu [Gu19] and in the code of libKriging. It
differs from the exponent \(a\) of \(\sigma^{-2}\) used above.

Footnotes

References

[Bac12]
François Bachoc. Parametric Estimation of Covariance Function in Gaussian-Process based Kriging Models. Application to Uncertainty Quantification for Computer Experiments. PhD thesis, Université Paris Diderot, 2012.

[BDOS01]
James O. Berger, Victor De Oliveira, and Bruno Sansó. Objective Bayesian Analysis of Spatially Correlated Data. Journal of the American Statistical Association, 96(456):1361–1374, 2001. doi:10.1198/016214501753382282[#1].

[BTA04]
Alain Berlinet and Christine Thomas-Agnan. Reproducing Kernel Hilbert Space in Probability and Statistics. Springer, 2004. doi:10.1007/978-1-4419-9096-9[#2].

[Gu16]
Mengyang Gu. Robust Uncertainty Quantification and Scalable Computation for Computer Models with Massive Output. PhD thesis, Duke University, 2016. URL: https://hdl.handle.net/10161/12882.

[Gu19]
Mengyang Gu. Jointly Robust Prior for Gaussian Stochastic Process in Emulation, Calibration and Variable Selection. Bayesian Analysis, 14(3):857–885, 2019. doi:10.1214/18-BA1133[#3].

[GWB18]
Mengyang Gu, Xiaojing Wand, and James O. Berger. Robust Gaussian Stochastic Process Emulation. Annals of Statistics, 46(6A):3038–3066, 2018. doi:10.1214/17-AOS1648[#4].

[Lan10]
Kenneth Lange. Numerical Analysis for Statisticians. Statistics & Computing. Springer-Verlag, 2nd edition, 2010. doi:10.1007/978-1-4419-5945-4[#5].

[MKGL96]
Kantilal V. Mardia, John T. Kent, Colin R. Goodall, and John A. Little. Kriging and Splines with Derivative Information. Biometrika, 83(1):207–221, 03 1996. doi:10.1093/biomet/83.1.207[#6].

[OHagan78]
Antony O'Hagan. Curve fitting and optimal design for prediction. Journal of the Royal Statistical Society: Series B, pages 1–42, 1978. doi:10.1111/j.2517-6161.1978.tb01643.x[#7].

[Pro19]
Luc Pronzato. Sensitivity Analysis via Karhunen-Loève Expansion of a Random Field Model: Estimation of Sobol' Indices and Experimental Design. Reliability Engineering and System Safety, pages 93–109, 2019. doi:10.1016/j.ress.2018.01.010[#8].

[RW06]
Carl E. Rasmussen and Christopher K.I. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2006. doi:10.7551/mitpress/3206.001.0001[#9].

[RGD12]
Olivier Roustant, David Ginsbourger, and Yves Deville. DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization. Journal of Statistical Software, pages 1–55, 2012. doi:10.18637/jss.v051.i01[#10].

[Ste12]
Michael L. Stein. Interpolation of Spatial Data. Some Theory for Kriging. Springer Series in Statistics. Springer-Verlag, 2012. doi:10.1007/978-1-4612-1494-6[#11].

[Wah78]
Grace Wahba. Improper Priors, Spline Smoothing and the Problem of Guarding Against Model Errors in Regression. Journal of the Royal Statistical Society: Series B, 40(3):364–372, 1978. doi:10.1111/j.2517-6161.1978.tb01050.x[#12].

 Index

Index

 Python/R/Matlab/Octave sample, predict, simulate 1D function

Python/R/Matlab/Octave sample, predict, simulate 1D function

Any sample code below should give you these figures:

[image: predict]
[image: simulate]

	Python: [image: Open In Colab][#1]

import numpy as np
X = [0.0, 0.25, 0.5, 0.75, 1.0]
f = lambda x: (1 - 1 / 2 * (np.sin(12 * x) / (1 + x) + 2 * np.cos(7 * x) * x ** 5 + 0.7))
y = [f(xi) for xi in X]

import pylibkriging as lk
k_py = lk.Kriging(y, X, "gauss")
print(k_py.summary())

you can also check logLikelihood using:
def ll(t): return k_py.logLikelihoodFun(t,False,False)[0]
t = np.arange(0,1,1/99); pyplot.figure(1); pyplot.plot(t, [ll(ti) for ti in t]); pyplot.show()

x = np.linspace(0, 1, 101)
p = k_py.predict(x, True, False, False)
p = {"mean": p[0], "stdev": p[1], "cov": p[2]}

import matplotlib.pyplot as pyplot
pyplot.figure(1)
pyplot.plot(x, [f(xi) for xi in x])
pyplot.scatter(X, [f(xi) for xi in X])
pyplot.plot(x, p['mean'], color='blue')
pyplot.fill(np.concatenate((x, np.flip(x))),
 np.concatenate((p['mean'] - 2 * p['stdev'], np.flip(p['mean'] + 2 * p['stdev']))), color='blue',
 alpha=0.2)
pyplot.show()

s = k_py.simulate(10, 123, x)

pyplot.figure(2)
pyplot.plot(x, [f(xi) for xi in x])
pyplot.scatter(X, [f(xi) for xi in X])
for i in range(10):
 pyplot.plot(x, s[:, i], color='blue', alpha=0.2)
pyplot.show()

	R: [image: Open In Colab][#2]

X <- as.matrix(c(0.0, 0.25, 0.5, 0.75, 1.0))
f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
y <- f(X)

library(rlibkriging)
k_R <- Kriging(y, X, "gauss")
print(k_R)

you can also check logLikelihood using:
ll = function(t) logLikelihoodFun(k_R,t)$logLikelihood; plot(ll)

x <- as.matrix(seq(0, 1, , 101))
p <- predict(k_R, x, TRUE, FALSE)

plot(f)
points(X, y)
lines(x, p$mean, col = 'blue')
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)), border = NA, col = rgb(0, 0, 1, 0.2))

s <- simulate(k_R,nsim = 10, seed = 123, x=x)

plot(f)
points(X,y)
matplot(x,s,col=rgb(0,0,1,0.2),type='l',lty=1,add=T)

	Matlab/Octave:

X = [0.0;0.25;0.5;0.75;1.0];
f = @(x) 1-1/2.*(sin(12*x)./(1+x)+2*cos(7.*x).*x.^5+0.7)
y = f(X);

k_m = Kriging(y, X, "gauss");
disp(k_m.summary());

% you can also check logLikelihood using:
% function llt = ll (tt) global k_m; llt=k_m.logLikelihoodFun(tt); endfunction; t=0:(1/99):1; plot(t,arrayfun(@ll,t))

x = reshape(0:(1/99):1,101,1);
[p_mean, p_stdev] = k_m.predict(x, true, false);
h = figure(1)

hold on;
plot(x,f(x));
scatter(X,f(X));
plot(x,p_mean,'b')
poly = fill([x; flip(x)], [(p_mean-2*p_stdev); flip(p_mean+2*p_stdev)],'b');
set(poly, 'facealpha', 0.2);
hold off;

s = k_m.simulate(int32(10),int32(123), x);

h = figure(2)
hold on;
plot(x,f(x));
scatter(X,f(X));
for i=1:10
 plot(x,s(:,i),'b');
end
hold off;

Footnotes

[#1]
https://colab.research.google.com/github/libKriging/readthedocs/blob/master/examples/py-demo.ipynb

[#2]
https://colab.research.google.com/github/libKriging/readthedocs/blob/master/examples/r-demo.ipynb

 <no title>

 Python/R/Matlab/Octave syntaxes are almost identical, just diverging through some basic language elements:

	Python

	R

	Matlab/Octave

	a = b

	a <- b

	a = b

	True

	TRUE

	true

	False

	FALSE

	false

	None

	NULL

	[]

	a.b()

	a$b()

	a.b()

Footnotes

_images/demo_basic-predict.png
10

08

06

04

02

00

00

02

04

06

08

10

_images/NoiseKriging.md.png

_images/NuggetKriging.md.png

_images/logLikelihoodFun.Kriging.md.png
00

05

10

15

20

_images/logLikelihoodFun.NoiseKriging.md.png
sigma2

10

08

06

04

02

00

10

theta.

15

20

_images/demo_basic-simulate.png
10

08

06

04

02

00

00

02

04

06

08

10

_images/leaveOneOutFun.Kriging.md.png
800

900

w00

(ool

200

20

15

10

05

00

_images/logLikelihoodFun.NuggetKriging.md.png
/ !
/

o0k

T T T T T
860 960 60 260 060

(19BBNU+ZEWBIS) ZEWBIS

20

15

10

05

00

theta.

_images/logMargPostFun.Kriging.md.png
20

15

10

05

00

_images/Kriging.md.png

_images/logMargPostFun.NuggetKriging.md.png
‘sigma2i/(sigma2+nugget)

092 094 096 098 1.00

090

theta

nav.xhtml

 Table of Contents

 		
 libKriging

 		
 Installation

 		
 Usage

 		
 Basic demo

 		
 SciKit-Learn wrapping

 		
 API

 		
 Contructors

 		
 Kriging

 		
 Kriging::update

 		
 Kriging::copy

 		
 Kriging::save & Kriging::load

 		
 NuggetKriging

 		
 NuggetKriging::update

 		
 NuggetKriging::copy

 		
 NuggetKriging::save & NuggetKriging::load

 		
 NoiseKriging

 		
 NoiseKriging::update

 		
 NoiseKriging::copy

 		
 NoiseKriging::save & NoiseKriging::load

 		
 Fit objective

 		
 Kriging::fit

 		
 Kriging::logLikelihood

 		
 Kriging::logLikelihoodFun

 		
 Kriging::leaveOneOut

 		
 Kriging::leaveOneOutFun

 		
 Kriging::logMargPost

 		
 Kriging::logMargPostFun

 		
 NuggetKriging::fit

 		
 NuggetKriging::logLikelihood

 		
 NuggetKriging::logLikelihoodFun

 		
 NuggetKriging::logMargPost

 		
 NuggetKriging::logMargPostFun

 		
 NoiseKriging::fit

 		
 NoiseKriging::logLikelihood

 		
 NoiseKriging::logLikelihoodFun

 		
 Prediction and simulation

 		
 Kriging::predict

 		
 Kriging::simulate

 		
 NuggetKriging::predict

 		
 NuggetKriging::simulate

 		
 NoiseKriging::predict

 		
 NoiseKriging::simulate

 		
 Models description

 		
 Kriging models

 		
 Components of Kriging models

 		
 Classes of Kriging model objects

 		
 Matrix formalism and assumptions

 		
 Kriging steps

 		
 Trend functions in Kriging models

 		
 The tensor product kernel

 		
 General form

 		
 Available 1D correlation kernels

 		
 Parameters

 		
 Functional point of view

 		
 Trend estimation

 		
 Generalized Least Squares

 		
 The Bending Energy Matrix

 		
 Prediction and simulation

 		
 Framework

 		
 The Kriging prediction

 		
 Plugging the covariance parameters into the prediction

 		
 Confidence interval on the Kriging mean

 		
 Derivative w.r.t. the input

 		
 Maximum likelihood

 		
 General form of the likelihood

 		
 Profile likelihood

 		
 Leave-one-out

 		
 Bayesian marginal analysis

 		
 Motivation and general form of prior

 		
 Objective priors of Gu et al

 		
 Fit: Bayesian marginal analysis

 		
 Table of marginal likelihood functions

 		
 Reference prior for the correlation parameters [not implemented yet]

 		
 The “Jointly Robust” prior of Gu

 		
 References

_images/predict.NuggetKriging.md.png

_images/simulate.Kriging.md.png
10

08

06

04

02

00

00

02

04

06

08

10

_images/predict.Kriging.md.png
10

08

06

04

02

00

00

02

04

06

08

10

_images/predict.NoiseKriging.md.png

_images/update.Kriging.md.png

_im