
libKriging
Release 0.7

libKriging team

May 26, 2023

CONTENTS

1 Contents 3

Bibliography 89

i

ii

libKriging, Release 0.7

libKriging is a C++ library for Kriging/Gaussian process regression.

Main features of libKriging are:

• Standard implementation of most common kriging:

– ordinary/universal kriging

– nugget (homoskedastic) or noise (heteroskedastic)

– optimization of hyper-parameters (range, nugget, variance, . . .) based on log-likelihood, leave-one-
out, log-marginal-posterior

– (pre-)normalization of conditional data

• Port from and comparison/testing with some standard kriging libraries:

– https://CRAN.R-project.org/package=DiceKriging

– https://CRAN.R-project.org/package=RobustGaSP

– https://github.com/stk-kriging

• Compatibility with commons OS/arch:

– Windows

– Linux

– OSX (intel & ARM)

• (Almost) full wrapper availables for:

– Python: https://pypi.org/project/pylibkriging/

– R: https://github.com/libKriging/rlibkriging

– Octave

– Matlab

Check out the Usage section for further information, and how to install the project.

Note: This project is under active development.

CONTENTS 1

https://CRAN.R-project.org/package=DiceKriging
https://CRAN.R-project.org/package=RobustGaSP
https://github.com/stk-kriging
https://pypi.org/project/pylibkriging/
https://github.com/libKriging/rlibkriging

libKriging, Release 0.7

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Installation

libKriging may be installed directly from:

• Python, from PyPI:

pip3 install pylibkriging

• R

– from CRAN:

install.packages('rlibkriging')

– from GitHub (dev version):

devtools::install_github('libKriging/rlibkriging')

• Octave/Matlab, download and uncompress the archive for your system from libKriging latest release https:
//github.com/libKriging/libKriging/releases/latest, then:

addpath("mLibKriging")

1.2 Usage

libKriging may be used through:

• direct C++ access

• Python wrapper

• R wrapper

• Octave wrapper

• Matlab wrapper

The basic usage is almost the same whatever lang.:

input design
X = ...
output results

(continues on next page)

3

https://github.com/libKriging/libKriging/releases/latest
https://github.com/libKriging/libKriging/releases/latest

libKriging, Release 0.7

(continued from previous page)

y = ...

load/import/... libKriging
...
build & fit Kriging model
k = Kriging(y, X, "gauss")
display model
print(k)

setup another (dense) input sample
x = ...

use kriging model to predict at x
p = k.predict(x, ...)

and/or use kriging model to simulate at x
s = k.simulate(nsim = 10, seed = 123, x)

1.2.1 Basic demo

Sample the objective function

𝑓 : 𝑥 → 1 − 1

2

(︂
𝑠𝑖𝑛(12𝑥)

1 + 𝑥
+ 2𝑐𝑜𝑠(7𝑥)𝑥5 + 0.7

)︂
at 𝑋 = {0.0, 0.25, 0.5, 0.75, 1.0}, then predict and simulate in [0, 1].

This code, for Python, R or Matlab/Octave should return for both Python: , R: or Matlab/Octave :

4 Chapter 1. Contents

https://colab.research.google.com/github/libKriging/readthedocs/blob/master/examples/py-demo.ipynb
https://colab.research.google.com/github/libKriging/readthedocs/blob/master/examples/r-demo.ipynb

libKriging, Release 0.7

1.2.2 SciKit-Learn wrapping

Implement SciKit-Learn BaseEstimator to plot gpr noisy targets (SciKit-Learn example:), using libKriging:

from sklearn.base import BaseEstimator
import pylibkriging as lk
import numpy as np

class KrigingEstimator(BaseEstimator):
def __init__(self, kernel="matern3_2", regmodel = "constant", normalize = False, optim␣

→˓= "BFGS", objective = "LL", noise = None, parameters = None):
self.kernel = kernel
self.regmodel = regmodel
self.normalize = normalize
self.optim = optim
self.objective = objective
self.noise = noise
self.parameters = parameters
if self.parameters is None:
self.parameters = {}

if self.noise is None:
self.kriging = lk.Kriging(self.kernel)

elif type(self.noise) is float: # homoskedastic user-defined "noise"
self.kriging = lk.NoiseKriging(self.kernel)

else:
raise Exception("noise type not supported:", type(self.noise))

def fit(self, X, y):
if self.noise is None:
self.kriging.fit(y, X, self.regmodel, self.normalize, self.optim, self.objective,␣

→˓self.parameters)
elif type(self.noise) is float: # homoskedastic user-defined "noise"

self.kriging.fit(y, np.repeat(self.noise, y.size), X, self.regmodel, self.
→˓normalize, self.optim, self.objective, self.parameters)
else:
raise Exception("noise type not supported:", type(self.noise))

def predict(self, X, return_std=False, return_cov=False):
return self.kriging.predict(X, return_std, return_cov, False)

def sample_y(self, X, n_samples = 1, random_state = 0):
return self.kriging.simulate(nsim = n_samples, seed = random_state, x = X)

def log_marginal_likelihood(self, theta=None, eval_gradient=False):
if theta is None:
return self.kriging.logLikeliHood()

else:
return self.kriging.logLikeliHoodFun(theta, eval_gradient)

1.2. Usage 5

https://colab.research.google.com/github/libKriging/readthedocs/blob/master/examples/plot_gpr_noisy_targets.ipynb

libKriging, Release 0.7

1.3 API

Following API doc supports:

• Python wrapper

• R wrapper

• Octave wrapper

• Matlab wrapper

Python/R/Matlab/Octave syntaxes are almost identical, just diverging through some basic language elements:

Python R Matlab/Octave
a = b a <- b a = b
True TRUE true
False FALSE false
None NULL []
a.b() a$b() a.b()

1.3.1 Contructors

Kriging

Description

Create a Kriging Object representing a Trend + GP Model

Usage

Just build the model:

Kriging(kernel)
later, call fit(y,X,...)

or, build and fit at the same time:

Kriging(
y,
X,
kernel,
regmodel = "constant",
normalize = FALSE,
optim = "BFGS",
objective = "LL",
parameters = NULL

)

6 Chapter 1. Contents

libKriging, Release 0.7

Arguments

Ar-
gu-
ment

Description

y Numeric vector of response values.
X Numeric matrix of input design.
kernelCharacter defining the covariance model: "gauss" , "exp" , "matern3_2" , "matern5_2".
regmodelUniversal Kriging linear trend.
normalizeLogical. If TRUE both the input matrix X and the response y in normalized to take values in the interval [0, 1]

.
optim Character giving the Optimization method used to fit hyper-parameters. Possible values are: "BFGS" ,

"Newton" and "none" , the later simply keeping the values given in parameters . The method "BFGS"
uses the gradient of the objective. The method "Newton" uses both the gradient and the Hessian of the
objective.

objectiveCharacter giving the objective function to optimize. Possible values are: "LL" for the Log-Likelihood,
"LOO" for the Leave-One-Out sum of squares and "LMP" for the Log-Marginal Posterior.

parametersInitial values for the hyper-parameters. When provided this must be named list with elements "sigma2" and
"theta" containing the initial value(s) for the variance and for the range parameters. If theta is a matrix
with more than one row, each row is used as a starting point for optimization.

Details

The hyper-parameters (variance and vector of correlation ranges) are estimated thanks to the optimization of a criterion
given by objective , using the method given in optim .

Value

An object "Kriging" . Should be used with its predict , simulate , update methods.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)
fit and print
k <- Kriging(y, X, kernel = "matern3_2")
k

x <- as.matrix(seq(from = 0, to = 1, length.out = 101))
p <- k$predict(x = x, stdev = TRUE, cov = FALSE)

plot(f)
points(X, y)
lines(x, p$mean, col = "blue")
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)),
border = NA, col = rgb(0, 0, 1, 0.2))

(continues on next page)

1.3. API 7

libKriging, Release 0.7

(continued from previous page)

s <- k$simulate(nsim = 10, seed = 123, x = x)

matlines(x, s, col = rgb(0, 0, 1, 0.2), type = "l", lty = 1)

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.194057,1.00912]
* trend constant (est.): 0.433954
* variance (est.): 0.0873685
* covariance:
* kernel: matern3_2
* range (est.): 0.240585
* fit:
* objective: LL
* optim: BFGS

8 Chapter 1. Contents

libKriging, Release 0.7

Kriging::update

Description

Update a Kriging model object with new points

Usage

• Python

k = Kriging(...)
k.update(newy, newX)

• R

k = Kriging(...)
k$update(newy, newX)

• Matlab/Octave

% k = Kriging(...)
k.update(newy, newX)

Arguments

Argument Description
newy Numeric vector of new responses (output).
newX Numeric matrix of new input points.

Examples

f <- function(x) 1- 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x)*x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)
points(X, y, col = "blue")

k <- Kriging(y, X, "matern3_2")

x <- seq(from = 0, to = 1, length.out = 101)
p <- k$predict(x)
lines(x, p$mean, col = "blue")
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)), border = NA,␣
→˓col = rgb(0, 0, 1, 0.2))

newX <- as.matrix(runif(3))
newy <- f(newX)

(continues on next page)

1.3. API 9

libKriging, Release 0.7

(continued from previous page)

points(newX, newy, col = "red")

change the content of the object 'k'
k$update(newy, newX)

x <- seq(from = 0, to = 1, length.out = 101)
p2 <- k$predict(x)
lines(x, p2$mean, col = "red")
polygon(c(x, rev(x)), c(p2$mean - 2 * p2$stdev, rev(p2$mean + 2 * p2$stdev)), border =␣
→˓NA, col = rgb(1, 0, 0, 0.2))

Results

10 Chapter 1. Contents

libKriging, Release 0.7

Kriging::copy

Description

Duplicate a Kriging Model

Usage

• Python

k = Kriging(...)
k2 = k.copy()

• R

k = Kriging(...)
k2 = k$copy()

• Matlab/Octave

% k = Kriging(...)
k2 = k.copy()

Value

The copy of object.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)

k <- Kriging(y, X, kernel = "matern3_2")
k
k$copy()

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.194057,1.00912]
* trend constant (est.): 0.433954
* variance (est.): 0.0873685
* covariance:
* kernel: matern3_2
* range (est.): 0.240585
* fit:
* objective: LL

(continues on next page)

1.3. API 11

libKriging, Release 0.7

(continued from previous page)

* optim: BFGS
* data: 10x[0.0455565,0.940467] -> 10x[0.194057,1.00912]
* trend constant (est.): 0.433954
* variance (est.): 0.0873685
* covariance:
* kernel: matern3_2
* range (est.): 0.240585
* fit:
* objective: LL
* optim: BFGS

functions/examples/copy.Kriging.md.png

Kriging::save & Kriging::load

Description

Save/Load a Kriging Model

Usage

• Python

k = Kriging(...)
k.save("k.h5")
k2 = load("k.h5")

• R

k = Kriging(...)
k$save("k.h5")
k2 = load("k.h5")

• Matlab/Octave

% k = Kriging(...)
k.save("k.h5")
k2 = load("k.h5")

12 Chapter 1. Contents

libKriging, Release 0.7

Value

The loaded object.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)

k <- Kriging(y, X, kernel = "matern3_2")
k
k$save("k.h5")
load("k.h5")

Results

functions/examples/saveload.Kriging.md.png

NuggetKriging

Description

Create an object "NuggetKriging" using the libKriging library.

Usage

Just build the model:

NuggetKriging(kernel)
later, call fit(y,X,...)

or, build and fit at the same time:

NuggetKriging(
y,
X,
kernel,
regmodel = "constant",
normalize = FALSE,
optim = "BFGS",
objective = "LL",

(continues on next page)

1.3. API 13

libKriging, Release 0.7

(continued from previous page)

parameters = NULL
)

Arguments

Ar-
gu-
ment

Description

y Numeric vector of response values.
X Numeric matrix of input design.
kernelCharacter defining the covariance model: "gauss" , "exp" , "matern3_2" , "matern5_2".
regmodelUniversal NuggetKriging linear trend.
normalizeLogical. If TRUE both the input matrix X and the response y in normalized to take values in the interval [0, 1]

.
optim Character giving the Optimization method used to fit hyper-parameters. Possible values are: "BFGS" and

"none" , the later simply keeping the values given in parameters . The method "BFGS" uses the gradient
of the objective.

objectiveCharacter giving the objective function to optimize. Possible values are: "LL" for the Log-Likelihood and
"LMP" for the Log-Marginal Posterior.

parametersInitial values for the hyper-parameters. When provided this must be named list with some elements
"sigma2", "theta", "nugget" containing the initial value(s) for the variance, range and nugget parame-
ters. If theta is a matrix with more than one row, each row is used as a starting point for optimization.

Details

The hyper-parameters (variance, nugget and vector of correlation ranges) are estimated thanks to the optimization of a
criterion given by objective , using the method given in optim .

Value

An object "NuggetKriging" . Should be used with its predict , simulate , update methods.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 * rnorm(nrow(X))
fit and print
k <- NuggetKriging(y, X, kernel = "matern3_2")
k

x <- sort(c(X,as.matrix(seq(from = 0, to = 1, length.out = 101))))
p <- k$predict(x = x, stdev = TRUE, cov = FALSE)

plot(f)
(continues on next page)

14 Chapter 1. Contents

libKriging, Release 0.7

(continued from previous page)

points(X, y)
lines(x, p$mean, col = "blue")
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)),
border = NA, col = rgb(0, 0, 1, 0.2))

s <- k$simulate(nsim = 10, seed = 123, x = x)

matlines(x, s, col = rgb(0, 0, 1, 0.2), type = "l", lty = 1)

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.149491,0.940566]
* trend constant (est.): 0.488124
* variance (est.): 0.0788813
* covariance:
* kernel: matern3_2
* range (est.): 0.275004
* nugget (est.): 0.00347449
* fit:
* objective: LL
* optim: BFGS

1.3. API 15

libKriging, Release 0.7

NuggetKriging::update

Description

Update a NuggetKriging model object with new points

Usage

• Python

k = NuggetKriging(...)
k.update(newy, newX)

• R

k = NuggetKriging(...)
k$update(newy, newX)

• Matlab/Octave

16 Chapter 1. Contents

libKriging, Release 0.7

% k = NuggetKriging(...)
k.update(newy, newX)

Arguments

Argument Description
newy Numeric vector of new responses (output).
newX Numeric matrix of new input points.

Examples

f <- function(x) 1- 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x)*x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 * rnorm(nrow(X))
points(X, y, col = "blue")

k <- NuggetKriging(y, X, "matern3_2")

x <- sort(c(X,seq(from = 0, to = 1, length.out = 101))) # include design points to see␣
→˓interpolation
p <- k$predict(x)
lines(x, p$mean, col = "blue")
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)), border = NA,␣
→˓col = rgb(0, 0, 1, 0.2))

newX <- as.matrix(runif(3))
newy <- f(newX) + 0.1 * rnorm(nrow(newX))
points(newX, newy, col = "red")

change the content of the object 'k'
k$update(newy, newX)

x <- sort(c(X,newX,seq(from = 0, to = 1, length.out = 101))) # include design points to␣
→˓see interpolation
p2 <- k$predict(x)
lines(x, p2$mean, col = "red")
polygon(c(x, rev(x)), c(p2$mean - 2 * p2$stdev, rev(p2$mean + 2 * p2$stdev)), border =␣
→˓NA, col = rgb(1, 0, 0, 0.2))

1.3. API 17

libKriging, Release 0.7

Results

NuggetKriging::copy

Description

Duplicate a NuggetKriging Model

Usage

• Python

k = NuggetKriging(...)
k2 = k.copy()

• R

18 Chapter 1. Contents

libKriging, Release 0.7

k = NuggetKriging(...)
k2 = k$copy()

• Matlab/Octave

% k = NuggetKriging(...)
k2 = k.copy()

Value

The copy of object.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 * rnorm(nrow(X))

k <- NuggetKriging(y, X, kernel = "matern3_2")
k
k$copy()

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.149491,0.940566]
* trend constant (est.): 0.488124
* variance (est.): 0.0788813
* covariance:
* kernel: matern3_2
* range (est.): 0.275004
* nugget (est.): 0.00347449
* fit:
* objective: LL
* optim: BFGS

* data: 10x[0.0455565,0.940467] -> 10x[0.149491,0.940566]
* trend constant (est.): 0.488124
* variance (est.): 0.0788813
* covariance:
* kernel: matern3_2
* range (est.): 0.275004
* nugget (est.): 0.00347449
* fit:
* objective: LL
* optim: BFGS

1.3. API 19

libKriging, Release 0.7

functions/examples/copy.NuggetKriging.md.png

NuggetKriging::save & NuggetKriging::load

Description

Save/Load a NuggetKriging Model

Usage

• Python

k = NuggetKriging(...)
k.save("k.h5")
k2 = load("k.h5")

• R

k = NuggetKriging(...)
k$save("k.h5")
k2 = load("k.h5")

• Matlab/Octave

% k = NuggetKriging(...)
k.save("k.h5")
k2 = load("k.h5")

Value

The loaded object.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 * rnorm(nrow(X))

k <- NuggetKriging(y, X, kernel = "matern3_2")
k
k$save("k.h5")
load("k.h5")

20 Chapter 1. Contents

libKriging, Release 0.7

Results

functions/examples/saveload.NuggetKriging.md.png

NoiseKriging

Description

Create an object "NoiseKriging" using the libKriging library.

Usage

Just build the model:

NoiseKriging(kernel)
later, call fit(y,X,...)

or, build and fit at the same time:

NoiseKriging(
y,
noise,
X,
kernel,
regmodel = "constant",
normalize = FALSE,
optim = "BFGS",
objective = "LL",
parameters = NULL

)

1.3. API 21

libKriging, Release 0.7

Arguments

Ar-
gu-
ment

Description

y Numeric vector of response values.
noise Numeric vector of response variances.
X Numeric matrix of input design.
kernelCharacter defining the covariance model: "gauss" , "exp" , "matern3_2" , "matern5_2".
regmodelUniversal NoiseKriging linear trend.
normalizeLogical. If TRUE both the input matrix X and the response y in normalized to take values in the interval

[0, 1] .
optim Character giving the Optimization method used to fit hyper-parameters. Possible values are: "BFGS" and

"none" , the later simply keeping the values given in parameters . The method "BFGS" uses the gradient
of the objective.

objectiveCharacter giving the objective function to optimize. Possible values are: "LL" for the Log-Likelihood.
parametersInitial values for the hyper-parameters. When provided this must be named list with elements "sigma2"

and "theta" containing the initial value(s) for the variance and for the range parameters. If theta is a
matrix with more than one row, each row is used as a starting point for optimization.

Details

The hyper-parameters (variance and vector of correlation ranges) are estimated thanks to the optimization of a criterion
given by objective , using the method given in optim .

Value

An object "NoiseKriging" . Should be used with its predict , simulate , update methods.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 * rnorm(nrow(X)) # add noise dep. on X
fit and print
k <- NoiseKriging(y, noise=(X/10)^2, X, kernel = "matern3_2")
k

x <- as.matrix(seq(from = 0, to = 1, length.out = 101))
p <- k$predict(x = x, stdev = TRUE, cov = FALSE)

plot(f)
points(X, y)
lines(x, p$mean, col = "blue")
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)),
border = NA, col = rgb(0, 0, 1, 0.2))

(continues on next page)

22 Chapter 1. Contents

libKriging, Release 0.7

(continued from previous page)

s <- k$simulate(nsim = 10, seed = 123, x = x)

matlines(x, s, col = rgb(0, 0, 1, 0.2), type = "l", lty = 1)

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.152144,0.957381]
* trend constant (est.): 0.487335
* variance (est.): 0.0635381
* covariance:
* kernel: matern3_2
* range (est.): 0.211413
* noise: 0.000827008, 0.00621425, 0.00167262, 0.0077972, 0.00884479, 2.07539e-05, 0.

→˓00278895, 0.00796412, 0.00304081, 0.00208497
* fit:
* objective: LL
* optim: BFGS

1.3. API 23

libKriging, Release 0.7

NoiseKriging::update

Description

Update a NoiseKriging model object with new points

Usage

• Python

k = NoiseKriging(...)
k.update(newy, newnoise, newX)

• R

k = NoiseKriging(...)
k$update(newy, newnoise, newX)

• Matlab/Octave

% k = NoiseKriging(...)
k.update(newy, newnoise, newX)

Arguments

Argument Description
newy Numeric vector of new responses (output).
newnoise Numeric vector of new noise variances (output).
newX Numeric matrix of new input points.

Examples

f <- function(x) 1- 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x)*x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 * rnorm(nrow(X))
points(X, y, col = "blue")

k <- NoiseKriging(y, (X/10)^2, X, "matern3_2")

x <- seq(from = 0, to = 1, length.out = 101)
p <- k$predict(x)
lines(x, p$mean, col = "blue")
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)), border = NA,␣
→˓col = rgb(0, 0, 1, 0.2))

newX <- as.matrix(runif(3))
(continues on next page)

24 Chapter 1. Contents

libKriging, Release 0.7

(continued from previous page)

newy <- f(newX) + 0.1 * rnorm(nrow(newX))
points(newX, newy, col = "red")

change the content of the object 'k'
k$update(newy, rep(0.1^2,3), newX)

x <- seq(from = 0, to = 1, length.out = 101)
p2 <- k$predict(x)
lines(x, p2$mean, col = "red")
polygon(c(x, rev(x)), c(p2$mean - 2 * p2$stdev, rev(p2$mean + 2 * p2$stdev)), border =␣
→˓NA, col = rgb(1, 0, 0, 0.2))

Results

1.3. API 25

libKriging, Release 0.7

NoiseKriging::copy

Description

Duplicate a NoiseKriging Model

Usage

• Python

k = NoiseKriging(...)
k2 = k.copy()

• R

k = NoiseKriging(...)
k2 = k$copy()

• Matlab/Octave

% k = NoiseKriging(...)
k2 = k.copy()

Value

The copy of object.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 * rnorm(nrow(X)) # add noise dep. on X

k <- NoiseKriging(y, noise=(X/10)^2, X, kernel = "matern3_2")
k
k$copy()

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.152144,0.957381]
* trend constant (est.): 0.487335
* variance (est.): 0.0635381
* covariance:
* kernel: matern3_2
* range (est.): 0.211413
* noise: 0.000827008, 0.00621425, 0.00167262, 0.0077972, 0.00884479, 2.07539e-05, 0.

→˓00278895, 0.00796412, 0.00304081, 0.00208497
(continues on next page)

26 Chapter 1. Contents

libKriging, Release 0.7

(continued from previous page)

* fit:
* objective: LL
* optim: BFGS

* data: 10x[0.0455565,0.940467] -> 10x[0.152144,0.957381]
* trend constant (est.): 0.487335
* variance (est.): 0.0635381
* covariance:
* kernel: matern3_2
* range (est.): 0.211413
* noise: 0.000827008, 0.00621425, 0.00167262, 0.0077972, 0.00884479, 2.07539e-05, 0.

→˓00278895, 0.00796412, 0.00304081, 0.00208497
* fit:
* objective: LL
* optim: BFGS

functions/examples/copy.NoiseKriging.md.png

NoiseKriging::save & NoiseKriging::load

Description

Save/Load a NoiseKriging Model

Usage

• Python

k = NoiseKriging(...)
k.save("k.h5")
k2 = load("k.h5")

• R

k = NoiseKriging(...)
k$save("k.h5")
k2 = load("k.h5")

• Matlab/Octave

% k = NoiseKriging(...)
k.save("k.h5")
k2 = load("k.h5")

1.3. API 27

libKriging, Release 0.7

Value

The loaded object.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 * rnorm(nrow(X)) # add noise dep. on X

k <- NoiseKriging(y, noise=(X/10)^2, X, kernel = "matern3_2")
k
k$save("k.h5")
load("k.h5")

Results

functions/examples/saveload.NoiseKriging.md.png

1.3.2 Fit objective

Kriging::fit

Description

Fit a Kriging Object using Given Observations

Usage

• Python

k = Kriging(kernel=...)
k.fit(y, X,

regmodel = "constant",
normalize = False,
optim = "BFGS",
objective = "LL",
parameters = None)

• R

28 Chapter 1. Contents

libKriging, Release 0.7

k = Kriging(kernel=...)
k$fit(y, X,

regmodel = "constant",
normalize = FALSE,
optim = "BFGS",
objective = "LL",
parameters = NULL)

• Matlab/Octave

% k = Kriging(kernel=...)
k.fit(y, X,

regmodel = "constant",
normalize = false,
optim = "BFGS",
objective = "LL",
parameters = [])

Arguments

Ar-
gu-
ment

Description

y Numeric vector of response values.
X Numeric matrix of input design.
regmodelUniversal Kriging linear trend.
normalizeLogical. If TRUE both the input matrix X and the response y in normalized to take values in the interval [0, 1]

.
optim Character giving the Optimization method used to fit hyper-parameters. Possible values are: "BFGS" ,

"Newton" and "none" , the later simply keeping the values given in parameters . The method "BFGS"
uses the gradient of the objective. The method "Newton" uses both the gradient and the Hessian of the
objective.

objectiveCharacter giving the objective function to optimize. Possible values are: "LL" for the Log-Likelihood,
"LOO" for the Leave-One-Out sum of squares and "LMP" for the Log-Marginal Posterior.

parametersInitial values for the hyper-parameters. When provided this must be named list with elements "sigma2" and
"theta" containing the initial value(s) for the variance and for the range parameters. If theta is a matrix
with more than one row, each row is used as a starting point for optimization.

1.3. API 29

libKriging, Release 0.7

Details

The hyper-parameters (variance and vector of correlation ranges) are estimated thanks to the optimization of a criterion
given by objective , using the method given in optim .

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)

k <- Kriging("matern3_2")
print("before fit")
print(k)

k$fit(y,X)
print("after fit")
print(k)

Results

[1] "before fit"
* covariance:
* kernel: matern3_2

[1] "after fit"
* data: 10x[0.0455565,0.940467] -> 10x[0.194057,1.00912]
* trend constant (est.): 0.433954
* variance (est.): 0.0873685
* covariance:
* kernel: matern3_2
* range (est.): 0.240585
* fit:
* objective: LL
* optim: BFGS

functions/examples/fit.Kriging.md.png

30 Chapter 1. Contents

libKriging, Release 0.7

Kriging::logLikelihood

Description

Get the Maximized Log-Likelihood of a Kriging Model Object

Usage

• Python

k = Kriging(...)
k.logLikelihood()

• R

k = Kriging(...)
k$logLikelihood()

• Matlab/Octave

% k = Kriging(...)
k.logLikelihood()

Details

See logLikelihoodFun.Kriging for more details on the profile log-likelihood function used in the maximization.

Value

The value of the maximized profile log-likelihood ℓprof(̂︀𝜃). This is also the value ℓ(̂︀𝜃, ̂︀𝜎2, ̂︀𝛽) of the maximized log-
likelihood.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)

k <- Kriging(y, X, kernel = "matern3_2", objective="LL")
print(k)

k$logLikelihood()

1.3. API 31

libKriging, Release 0.7

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.194057,1.00912]
* trend constant (est.): 0.433954
* variance (est.): 0.0873685
* covariance:
* kernel: matern3_2
* range (est.): 0.240585
* fit:
* objective: LL
* optim: BFGS

[1] 8.62771

functions/examples/logLikelihood.Kriging.md.png

Reference

• Code: https://github.com/libKriging/libKriging/blob/master/src/lib/Kriging.cpp#L94

Kriging::logLikelihoodFun

Description

Compute the Profile Log-Likelihood of a Kriging Model Object for a given Vector 𝜃 of Correlation Ranges

Usage

• Python

k = Kriging(...)
k.logLikelihoodFun(theta)

• R

k = Kriging(...)
k$logLikelihoodFun(theta)

• Matlab/Octave

% k = Kriging(...)
k.logLikelihoodFun(theta)

32 Chapter 1. Contents

https://github.com/libKriging/libKriging/blob/master/src/lib/Kriging.cpp#L94

libKriging, Release 0.7

Arguments

Argument Description
theta A numeric vector of (positive) range parameters at which the profile log-likelihood will be evaluated.
grad Logical. Should the function return the gradient?
hess Logical. Should the function return Hessian?

Details

The profile log-likelihood ℓprof(𝜃) is obtained from the log-likelihood function ℓ(𝜃, 𝜎2, 𝛽) by replacing the GP vari-
ance 𝜎2 and the vector 𝛽 of trend coefficients by their ML estimates ̂︀𝜎2 and ̂︀𝛽 which are obtained by Generalized Least
Squares. See here for more details.

Value

The value of the profile log-likelihood ℓprof(𝜃) for the given vector 𝜃 of correlation ranges.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)

k <- Kriging(y, X, kernel = "matern3_2")
print(k)

ll <- function(theta) k$logLikelihoodFun(theta)$logLikelihood

t <- seq(from = 0.001, to = 2, length.out = 101)
plot(t, ll(t), type = 'l')
abline(v = k$theta(), col = "blue")

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.194057,1.00912]
* trend constant (est.): 0.433954
* variance (est.): 0.0873685
* covariance:
* kernel: matern3_2
* range (est.): 0.240585
* fit:
* objective: LL
* optim: BFGS

1.3. API 33

libKriging, Release 0.7

Kriging::leaveOneOut

Description

Get the Minimized Leave-One-Out Sum of Squares of a Kriging Model

Usage

• Python

k = Kriging(...)
k.leaveOneOut()

• R

k = Kriging(...)
k$leaveOneOut()

• Matlab/Octave

34 Chapter 1. Contents

libKriging, Release 0.7

% k = Kriging(...)
k.leaveOneOut()

Value

The minimized Leave-One-Out (LOO) sum of squares SSELOO, corresponding to the estimated value ̂︀𝜃 of the vector of
correlation ranges. See leaveOneOutFun.Kriging for more details.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)

k <- Kriging(y, X, kernel = "matern3_2", objective="LOO")
print(k)

k$leaveOneOut()

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.194057,1.00912]
* trend constant (est.): 0.406331
* variance (est.): 0.0471509
* covariance:
* kernel: matern3_2
* range (est.): 0.284722
* fit:
* objective: LOO
* optim: BFGS

[1] 0.003159176

functions/examples/leaveOneOut.Kriging.md.png

1.3. API 35

libKriging, Release 0.7

Reference

• Code: https://github.com/libKriging/libKriging/blob/master/src/lib/Kriging.cpp#L350

Kriging::leaveOneOutFun

Description

Compute the Leave-One-Out (LOO) Sum of Squares of Errors for a Kriging Object and a Vector 𝜃 of Correlation
Ranges

Usage

• Python

k = Kriging(...)
k.logMargPostFun(theta, grad = FALSE)

• R

k = Kriging(...)
k$logMargPostFun(theta, grad = FALSE)

• Matlab/Octave

% k = Kriging(...)
k.logMargPostFun(theta, grad = FALSE)

Arguments

Argument Description
theta A numeric vector of range parameters at which the LOO sum of squares will be evaluated.
grad Logical. Should the gradient (w.r.t. theta) be returned?

Details

The Leave-One-Out (LOO) sum of squares is defined by SSLOO(𝜃) :=
∑︀𝑛

𝑖=1{𝑦𝑖 − ̂︀𝑦𝑖|−𝑖}2 where ̂︀𝑦𝑖|−𝑖 denotes the
prediction of 𝑦𝑖 based on the observations 𝑦𝑗 with 𝑗 ̸= 𝑖. The vector ̂︀yLOO of LOO predictions is computed efficiently,
see here for details.

36 Chapter 1. Contents

https://github.com/libKriging/libKriging/blob/master/src/lib/Kriging.cpp#L350

libKriging, Release 0.7

Value

The value SSELOO(𝜃) of the Leave-One-Out Sum of Squares for the given vector 𝜃 of correlation ranges.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)

k <- Kriging(y, X, kernel = "matern3_2", objective = "LOO", optim="BFGS")
print(k)

loo <- function(theta) k$leaveOneOutFun(theta)$leaveOneOut
t <- seq(from = 0.001, to = 2, length.out = 101)
plot(t, loo(t), type = "l")
abline(v = k$theta(), col = "blue")

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.194057,1.00912]
* trend constant (est.): 0.406331
* variance (est.): 0.0471509
* covariance:
* kernel: matern3_2
* range (est.): 0.284722
* fit:
* objective: LOO
* optim: BFGS

1.3. API 37

libKriging, Release 0.7

Kriging::logMargPost

Description

Get the Maximized Log-Marginal Posterior Density of a Kriging Model

Usage

• Python

k = Kriging(...)
k.logMargPost()

• R

k = Kriging(...)
k$logMargPost()

• Matlab/Octave

38 Chapter 1. Contents

libKriging, Release 0.7

% k = Kriging(...)
k.logMargPost()

Details

Using the jointly robust prior 𝜋JR(𝜃, 𝜎
2, 𝛽) the marginal or integrated posterior is the function of 𝜃 obtained

from the posterior density by marginalizing out the GP variance 𝜎2 and the vector 𝛽 of trend coefficients. See
logMargPostFun.Kriging for the log-marginal posterior density. By maximizing this function w.r.t. 𝜃 we get esti-
mated correlation ranges which are warranted to be postitive and finite 0 < 𝜃𝑘 < ∞.

Value

The maximal value of the log-marginal posterior density, corresponding to the estimated value of the vector 𝜃 of
correlation ranges.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)

k <- Kriging(y, X, kernel = "matern3_2", objective="LMP")
print(k)

k$logMargPost()

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.194057,1.00912]
* trend constant (est.): 0.388566
* variance (est.): 0.158896
* covariance:
* kernel: matern3_2
* range (est.): 0.313364
* fit:
* objective: LMP
* optim: BFGS

[1] 10.64938

functions/examples/logMargPost.Kriging.md.png

1.3. API 39

libKriging, Release 0.7

Reference

• Code: https://github.com/libKriging/libKriging/blob/master/src/lib/Kriging.cpp#L494

• The RobustGaSP R package

Kriging::logMargPostFun

Description

Compute the Log-Marginal Posterior Density of a Kriging Model Object for a given Vector 𝜃 of Correlation Ranges

Usage

• Python

k = Kriging(...)
k.logMargPostFun(theta, grad = FALSE)

• R

k = Kriging(...)
k$logMargPostFun(theta, grad = FALSE)

• Matlab/Octave

% k = Kriging(...)
k.logMargPostFun(theta, grad = FALSE)

Arguments

Argument Description
theta Numeric vector of correlation range parameters at which the function is to be evaluated.
grad Logical. Should the function return the gradient (w.r.t theta)?

Details

The log-marginal posterior density relates to the jointly robust prior 𝜋JR(𝜃, 𝜎
2, 𝛽) ∝ 𝜋(𝜃)𝜎−2. The marginal (or

integrated) posterior is the function 𝜃 obtained by marginalizing out the GP variance 𝜎2 and the vector 𝛽 of trend
coefficients. Due to the form of the prior, the marginalization can be done on the likelihood 𝑝marg(𝜃 |y) ∝ 𝜋(𝜃) ×
𝐿marg(𝜃; y).

40 Chapter 1. Contents

https://github.com/libKriging/libKriging/blob/master/src/lib/Kriging.cpp#L494
https://CRAN.R-project.org/package=RobustGaSP

libKriging, Release 0.7

Value

The value of the log-marginal posterior density log 𝑝marg(𝜃 |y). By maximizing this function we should get the estimate
of 𝜃 obtained when using objective = "LMP" in the fit.Kriging method.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)

k <- Kriging(y, X, "matern3_2", objective="LMP")
print(k)

lmp <- function(theta) k$logMargPostFun(theta)$logMargPost

t <- seq(from = 0.01, to = 2, length.out = 101)
plot(t, lmp(t), type = "l")
abline(v = k$theta(), col = "blue")

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.194057,1.00912]
* trend constant (est.): 0.388566
* variance (est.): 0.158896
* covariance:
* kernel: matern3_2
* range (est.): 0.313364
* fit:
* objective: LMP
* optim: BFGS

1.3. API 41

libKriging, Release 0.7

NuggetKriging::fit

Description

Fit a NuggetKriging Model Object using given Observations

Usage

• Python

k = NuggetKriging(kernel=...)
k.fit(y, X,

regmodel = "constant",
normalize = False,
optim = "BFGS",
objective = "LL",
parameters = None)

• R

42 Chapter 1. Contents

libKriging, Release 0.7

k = NuggetKriging(kernel=...)
k$fit(y, X,

regmodel = "constant",
normalize = FALSE,
optim = "BFGS",
objective = "LL",
parameters = NULL)

• Matlab/Octave

% k = NuggetKriging(kernel=...)
k.fit(y, X,

regmodel = "constant",
normalize = false,
optim = "BFGS",
objective = "LL",
parameters = [])

Arguments

Ar-
gu-
ment

Description

y Numeric vector of response values.
X Numeric matrix of input design.
regmodelUniversal NuggetKriging linear trend.
normalizeLogical. If TRUE both the input matrix X and the response y in normalized to take values in the interval [0, 1]

.
optim Character giving the Optimization method used to fit hyper-parameters. Possible values are: "BFGS" and

"none" , the later simply keeping the values given in parameters . The method "BFGS" uses the gradient
of the objective.

objectiveCharacter giving the objective function to optimize. Possible values are: "LL" for the Log-Likelihood and
"LMP" for the Log-Marginal Posterior.

parametersInitial values for the hyper-parameters. When provided this must be named list with some elements
"sigma2" , "theta" , "nugget" containing the initial value(s) for the variance, range and nugget pa-
rameters. If theta is a matrix with more than one row, each row is used as a starting point for optimization.

kernelCharacter defining the covariance model: "exp" , "gauss" , "matern3_2" , "matern5_2" .

1.3. API 43

libKriging, Release 0.7

Details

The hyper-parameters (variance and vector of correlation ranges) are estimated thanks to the optimization of a criterion
given by objective , using the method given in optim .

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 * rnorm(nrow(X))

k <- NuggetKriging("matern3_2")
print("before fit")
print(k)

k$fit(y,X)
print("after fit")
print(k)

Results

[1] "before fit"
* covariance:
* kernel: matern3_2

[1] "after fit"
* data: 10x[0.0455565,0.940467] -> 10x[0.149491,0.940566]
* trend constant (est.): 0.488124
* variance (est.): 0.0788813
* covariance:
* kernel: matern3_2
* range (est.): 0.275004
* nugget (est.): 0.00347449
* fit:
* objective: LL
* optim: BFGS

functions/examples/fit.NuggetKriging.md.png

44 Chapter 1. Contents

libKriging, Release 0.7

NuggetKriging::logLikelihood

Description

Get the Maximized Log-Likelihood of a NuggetKriging Model Object

Usage

• Python

k = NuggetKriging(...)
k.logLikelihood()

• R

k$logLikelihood()

• Matlab/Octave

% k = NuggetKriging(...)
k.logLikelihood()

Details

See logLikelihoodFun.NuggetKriging for more details on the corresponding profile log-likelihood function.

Value

The value of the maximized profile log-likelihood ℓprof(̂︀𝜃, ̂︀𝛼) where 𝛼 := 𝜎2/(𝜎2+𝜈2) is the ratio of the variances 𝜎2

for the GP and 𝜎2 +𝜈2 for the GP + nugget. This is also the value ℓ(̂︀𝜃, ̂︀𝛼, ̂︀𝜎2, ̂︀𝛽) or ℓ(̂︀𝜃, ̂︀𝜎2, ̂︀𝜏2, ̂︀𝛽) of the maximized
log-likelihood.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 * rnorm(nrow(X))

k <- NuggetKriging(y, X, kernel = "matern3_2", objective="LL")
print(k)

k$logLikelihood()

1.3. API 45

libKriging, Release 0.7

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.149491,0.940566]
* trend constant (est.): 0.488124
* variance (est.): 0.0788813
* covariance:
* kernel: matern3_2
* range (est.): 0.275004
* nugget (est.): 0.00347449
* fit:
* objective: LL
* optim: BFGS

[1] 4.95114

functions/examples/logLikelihood.NuggetKriging.md.png

Reference

• Code: https://github.com/libKriging/libKriging/blob/master/src/lib/NuggetKriging.cpp#L94

NuggetKriging::logLikelihoodFun

Description

Compute the Profile Log-Likelihood of a NuggetKriging Model for given Vector 𝜃 of Correlation Ranges and a given
Ratio of Variances GP/(GP + nugget)

Usage

• Python

k = NuggetKriging(...)
k.logLikelihoodFun(theta_alpha, grad = FALSE)

• R

k = NuggetKriging(...)
k$logLikelihoodFun(theta_alpha, grad = FALSE)

• Matlab/Octave

% k = NuggetKriging(...)
k.logLikelihoodFun(theta_alpha, grad = FALSE)

46 Chapter 1. Contents

https://github.com/libKriging/libKriging/blob/master/src/lib/NuggetKriging.cpp#L94

libKriging, Release 0.7

Arguments

Argument Description
theta_alphaA numeric vector of (positive) range parameters and variance over nugget + variance at which the

log-likelihood will be evaluated.
grad Logical. Should the function return the gradient?

Details

Consider the log-likelihood function ℓ(𝜃, 𝜎2, 𝜏2, 𝛽) where 𝜎2 and 𝜏2 are the variances of the GP and the nugget
components. A re-parameterization can be used with the two variances replaced by 𝜈2 := 𝜎2 + 𝜏2 and 𝛼 := 𝜎2/(𝜎2 +
𝜏2). The profile log-likelihood is then obtained by replacing the variance 𝜈2 := 𝜎2 + 𝜏2 and the vector 𝛽 of trend
coefficients by their ML estimates ̂︀𝜈2 and ̂︀𝛽 which are obtained by Generalized Least Squares. See here for more
details.

Value

The value of the profile log-likelihood ℓprof(𝜃, 𝛼) for the given vector 𝜃 of correlation ranges and the given variance
ratio 𝛼 := 𝜎2/(𝜎2 + 𝜏2) where 𝜎2 and 𝜏2 stand for the GP and the nugget variance. The parameters must be such that
𝜃𝑘 > 0 for 𝑘 = 1, . . ., 𝑑 and 0 < 𝛼 < 1.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 * rnorm(nrow(X))

k <- NuggetKriging(y, X, kernel = "matern3_2")
print(k)

theta0 = k$theta()
ll_alpha <- function(alpha) k$logLikelihoodFun(cbind(theta0,alpha))$logLikelihood
a <- seq(from = 0.9, to = 1.0, length.out = 101)
plot(a, Vectorize(ll_alpha)(a), type = "l",xlim=c(0.9,1))
abline(v = k$sigma2()/(k$sigma2()+k$nugget()), col = "blue")
#
alpha0 = k$sigma2()/(k$sigma2()+k$nugget())
ll_theta <- function(theta) k$logLikelihoodFun(cbind(theta,alpha0))$logLikelihood
t <- seq(from = 0.001, to = 2, length.out = 101)
plot(t, Vectorize(ll_theta)(t), type = 'l')
abline(v = k$theta(), col = "blue")

ll <- function(theta_alpha) k$logLikelihoodFun(theta_alpha)$logLikelihood
a <- seq(from = 0.9, to = 1.0, length.out = 31)
t <- seq(from = 0.001, to = 2, length.out = 101)
contour(t,a,matrix(ncol=length(a),ll(expand.grid(t,a))),xlab="theta",ylab="sigma2/
→˓(sigma2+nugget)")
points(k$theta(),k$sigma2()/(k$sigma2()+k$nugget()),col='blue')

1.3. API 47

libKriging, Release 0.7

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.149491,0.940566]
* trend constant (est.): 0.488124
* variance (est.): 0.0788813
* covariance:
* kernel: matern3_2
* range (est.): 0.275004
* nugget (est.): 0.00347449
* fit:
* objective: LL
* optim: BFGS

48 Chapter 1. Contents

libKriging, Release 0.7

NuggetKriging::logMargPost

Description

Get the Maximized Log-Marginal Posterior Density of a NuggetKriging Model

Usage

• Python

k = NuggetKriging(...)
k.logMargPost()

• R

k = NuggetKriging(...)
k$logMargPost()

• Matlab/Octave

% k = NuggetKriging(...)
k.logMargPost()

Details

Using the jointly robust prior 𝜋JR(𝜃, 𝛼, 𝜎2, 𝛽) the marginal or integrated posterior is the function of 𝜃 and 𝛼 ob-
tained from the posterior density by marginalizing out the GP variance 𝜎2 and the vector 𝛽 of trend coefficients. See
logMargPostFun.NuggetKriging for the log-marginal posterior density. By maximizing this function w.r.t. 𝜃 and
𝛼 we get estimated correlation ranges which are warranted to be postitive and finite 0 < 𝜃𝑘 < ∞. The estimated
variance ratio is such that 0 < 𝛼 < 1.

Value

The maximal value of the log-marginal posterior density, corresponding to the estimated value of the vector [𝜃, 𝛼]
where 𝜃 is the vector of correlation ranges and 𝛼 := 𝜎2/(𝜎2 + 𝜏2) is the ratio of variance GP/(GP + nugget).

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 * rnorm(nrow(X))

k <- NuggetKriging(y, X, kernel = "matern3_2", objective="LMP")
print(k)

k$logMargPost()

1.3. API 49

libKriging, Release 0.7

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.149491,0.940566]
* trend constant (est.): 0.389559
* variance (est.): 0.192207
* covariance:
* kernel: matern3_2
* range (est.): 0.434061
* nugget (est.): 0.00330572
* fit:
* objective: LMP
* optim: BFGS

[1] 7.010943

functions/examples/logMargPost.NuggetKriging.md.png

Reference

• Code: https://github.com/libKriging/libKriging/blob/master/src/lib/NuggetKriging.cpp#L494

• The RobustGaSP R package

NuggetKriging::logMargPostFun

Description

Compute the Log-Marginal Posterior Density of a NuggetKriging Model for a given Vector 𝜃 of Correlation Ranges
and a given Ratio 𝜎2/(𝜎2 + 𝜏2) of Variances GP/(GP + nugget)

Usage

• Python

k = Kriging(...)
k.logMargPostFun(theta_alpha, grad = FALSE)

• R

k = Kriging(...)
k$logMargPostFun(theta_alpha, grad = FALSE)

• Matlab/Octave

% k = Kriging(...)
k.logMargPostFun(theta_alpha, grad = FALSE)

50 Chapter 1. Contents

https://github.com/libKriging/libKriging/blob/master/src/lib/NuggetKriging.cpp#L494
https://CRAN.R-project.org/package=RobustGaSP

libKriging, Release 0.7

Arguments

Argument Description
theta_alphaNumeric vector of correlation range and variance over nugget + variance parameters at which the

function is to be evaluated.
grad Logical. Should the function return the gradient (w.r.t theta_alpha)?

Details

The log-marginal posterior density relates to the jointly robust prior 𝜋JR(𝜃, 𝛼, 𝜎
2, 𝛽) ∝ 𝜋(𝜃, 𝛼)𝜎−2. The marginal

(or integrated) posterior is the function 𝜃 and 𝛼 obtained by marginalizing out the GP variance 𝜎2 and the vector 𝛽 of
trend coefficients. Due to the form of the prior, the marginalization can be done on the likelihood 𝑝marg(𝜃, 𝛼 |y) ∝
𝜋(𝜃, 𝛼) × 𝐿marg(𝜃, 𝛼; y).

Value

The value of the log-marginal posterior density log 𝑝marg(𝜃, 𝛼 |y) where 𝜃 is the vector of correlation ranges and
𝛼 = 𝜎2/(𝜎2 + 𝜏2) is the ratio of variances GP/(GP + nugget). By maximizing this function we should get the
estimates of 𝜃 and 𝛼 obtained when using objective = "LMP" in the fit.NuggetKriging method.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 * rnorm(nrow(X))

k <- NuggetKriging(y, X, "matern3_2", objective="LMP")
print(k)

theta0 = k$theta()
lmp_alpha <- function(alpha) k$logMargPostFun(cbind(theta0,alpha))$logMargPost
a <- seq(from = 0.9, to = 1.0, length.out = 101)
plot(a, Vectorize(lmp_alpha)(a), type = "l",xlim=c(0.9,1))
abline(v = k$sigma2()/(k$sigma2()+k$nugget()), col = "blue")
#
alpha0 = k$sigma2()/(k$sigma2()+k$nugget())
lmp_theta <- function(theta) k$logMargPostFun(cbind(theta,alpha0))$logMargPost
t <- seq(from = 0.001, to = 2, length.out = 101)
plot(t, Vectorize(lmp_theta)(t), type = 'l')
abline(v = k$theta(), col = "blue")

lmp <- function(theta_alpha) k$logMargPostFun(theta_alpha)$logMargPost
t <- seq(from = 0.4, to = 0.6, length.out = 51)
a <- seq(from = 0.9, to = 1, length.out = 51)
contour(t,a,matrix(ncol=length(t),lmp(expand.grid(t,a))),nlevels=50,xlab="theta",ylab=
→˓"sigma2/(sigma2+nugget)")
points(k$theta(),k$sigma2()/(k$sigma2()+k$nugget()),col='blue')

1.3. API 51

libKriging, Release 0.7

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.149491,0.940566]
* trend constant (est.): 0.389559
* variance (est.): 0.192207
* covariance:
* kernel: matern3_2
* range (est.): 0.434061
* nugget (est.): 0.00330572
* fit:
* objective: LMP
* optim: BFGS

52 Chapter 1. Contents

libKriging, Release 0.7

NoiseKriging::fit

Description

Fit a NoiseKriging Model Object with given Observations

Usage

• Python

k = NoiseKriging(kernel=...)
k.fit(y, noise, X,

regmodel = "constant",
normalize = False,
optim = "BFGS",
objective = "LL",
parameters = None)

• R

k = NoiseKriging(kernel=...)
k$fit(y, noise, X,

regmodel = "constant",
normalize = FALSE,
optim = "BFGS",
objective = "LL",
parameters = NULL)

• Matlab/Octave

% k = NoiseKriging(kernel=...)
k.fit(y, noise, X,

regmodel = "constant",
normalize = false,
optim = "BFGS",
objective = "LL",
parameters = [])

1.3. API 53

libKriging, Release 0.7

Arguments

Ar-
gu-
ment

Description

y Numeric vector of response values.
noise Numeric vector of response variances.
X Numeric matrix of input design.
regmodelUniversal NoiseKriging linear trend.
normalizeLogical. If TRUE both the input matrix X and the response y in normalized to take values in the interval

[0, 1] .
optim Character giving the Optimization method used to fit hyper-parameters. Possible values are: "BFGS" and

"none" , the later simply keeping the values given in parameters . The method "BFGS" uses the gradient
of the objective.

objectiveCharacter giving the objective function to optimize. Possible values are: "LL" for the Log-Likelihood.
parametersInitial values for the hyper-parameters. When provided this must be named list with elements "sigma2"

and "theta" containing the initial value(s) for the variance and for the range parameters. If theta is a
matrix with more than one row, each row is used as a starting point for optimization.

kernelCharacter defining the covariance model: "exp" , "gauss" , "matern3_2" , "matern5_2" .

Details

The hyper-parameters (variance and vector of correlation ranges) are estimated thanks to the optimization of a criterion
given by objective , using the method given in optim. For now only the maximum-likelihood estimation is allowed.
See this section for more details on the maximum-likelihood estimation.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 * rnorm(nrow(X)) # add noise dep. on X

k <- NoiseKriging("matern3_2")
print("before fit")
print(k)

k$fit(y,noise=(X/10)^2,X)
print("after fit")
print(k)

54 Chapter 1. Contents

libKriging, Release 0.7

Results

[1] "before fit"
* covariance:
* kernel: matern3_2

[1] "after fit"
* data: 10x[0.0455565,0.940467] -> 10x[0.152144,0.957381]
* trend constant (est.): 0.487335
* variance (est.): 0.0635381
* covariance:
* kernel: matern3_2
* range (est.): 0.211413
* noise: 0.000827008, 0.00621425, 0.00167262, 0.0077972, 0.00884479, 2.07539e-05, 0.

→˓00278895, 0.00796412, 0.00304081, 0.00208497
* fit:
* objective: LL
* optim: BFGS

functions/examples/fit.NoiseKriging.md.png

NoiseKriging::logLikelihood

Description

Get the Maximized Log-Likelihood of a NoiseKriging Model Object

Usage

• Python

k = NoiseKriging(...)
k.logLikelihood()

• R

k = NoiseKriging(...)
k$logLikelihood()

• Matlab/Octave

% k = NoiseKriging(...)
k.logLikelihood()

1.3. API 55

libKriging, Release 0.7

Details

See logLikelihoodFun.NoiseKriging for more details on the corresponding profile log-likelihood function.

Value

The value of the maximized profile log-likelihood ℓprof(̂︀𝜃, ̂︀𝜎2). This is also the maximized value ℓ(̂︀𝜃, ̂︀𝜎2, ̂︀𝛽) of the
log-likelihood.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 * rnorm(nrow(X))

k <- NoiseKriging(y, (X/10)^2, X, kernel = "matern3_2", objective="LL")
print(k)

k$logLikelihood()

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.152144,0.957381]
* trend constant (est.): 0.487335
* variance (est.): 0.0635381
* covariance:
* kernel: matern3_2
* range (est.): 0.211413
* noise: 0.000827008, 0.00621425, 0.00167262, 0.0077972, 0.00884479, 2.07539e-05, 0.

→˓00278895, 0.00796412, 0.00304081, 0.00208497
* fit:
* objective: LL
* optim: BFGS

[1] 5.200129

functions/examples/logLikelihood.NoiseKriging.md.png

56 Chapter 1. Contents

libKriging, Release 0.7

Reference

• Code: https://github.com/libKriging/libKriging/blob/master/src/lib/NoiseKriging.cpp#L94

NoiseKriging::logLikelihoodFun

Description

Compute the Profile Log-Likelihood of a NoiseKriging Model for a given Vector 𝜃 of Correlation Ranges and a
given GP Variance 𝜎2

Usage

• Python

k = NoiseKriging(...)
k.logLikelihoodFun(theta_sigma2, grad)

• R

k = NoiseKriging(...)
k$logLikelihoodFun(theta_sigma2, grad)

• Matlab/Octave

% k = NoiseKriging(...)
k.logLikelihoodFun(theta_sigma2, grad)

Arguments

Argument Description
theta_sigma2 A numeric vector of (positive) range parameters and variance at which the log-likelihood will be

evaluated.
grad Logical. Should the function return the gradient?

Details

The profile log-likelihood is obtained from the log-likelihood function ℓ(𝜃, 𝜎2, 𝛽) by replacing the vector 𝛽 of trend
coefficients by its ML estimate ̂︀𝛽 which is obtained by Generalized Least Squares. See here for more details.

1.3. API 57

https://github.com/libKriging/libKriging/blob/master/src/lib/NoiseKriging.cpp#L94

libKriging, Release 0.7

Value

The value of the profile log-likelihood ℓprof(𝜃, 𝜎
2) for the given vector 𝜃 of correlation ranges and the given GP

variance 𝜎2.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 *rnorm(nrow(X))

k <- NoiseKriging(y, (X/10)^2, X, kernel = "matern3_2")
print(k)

theta0 = k$theta()
ll_sigma2 <- function(sigma2) k$logLikelihoodFun(cbind(theta0,sigma2))$logLikelihood
s2 <- seq(from = 0.001, to = 1, length.out = 101)
plot(s2, Vectorize(ll_sigma2)(s2), type = 'l')
abline(v = k$sigma2(), col = "blue")

sigma20 = k$sigma2()
ll_theta <- function(theta) k$logLikelihoodFun(cbind(theta,sigma20))$logLikelihood
t <- seq(from = 0.001, to = 2, length.out = 101)
plot(t, Vectorize(ll_theta)(t), type = 'l')
abline(v = k$theta(), col = "blue")

ll <- function(theta_sigma2) k$logLikelihoodFun(theta_sigma2)$logLikelihood
s2 <- seq(from = 0.001, to = 1, length.out = 31)
t <- seq(from = 0.001, to = 2, length.out = 31)
contour(t,s2,matrix(ncol=length(s2),ll(expand.grid(t,s2))),xlab="theta",ylab="sigma2")
points(k$theta(),k$sigma2(),col='blue')

Results

* data: 10x[0.0455565,0.940467] -> 10x[0.152144,0.957381]
* trend constant (est.): 0.487335
* variance (est.): 0.0635381
* covariance:
* kernel: matern3_2
* range (est.): 0.211413
* noise: 0.000827008, 0.00621425, 0.00167262, 0.0077972, 0.00884479, 2.07539e-05, 0.

→˓00278895, 0.00796412, 0.00304081, 0.00208497
* fit:
* objective: LL
* optim: BFGS

58 Chapter 1. Contents

libKriging, Release 0.7

1.3.3 Prediction and simulation

Kriging::predict

Description

Predict from a Kriging Model Object

Usage

• Python

k = Kriging(...)
k.predict(x, stdev = True, cov = False, deriv = False)

• R

k = Kriging(...)
k$predict(x, stdev = TRUE, cov = FALSE, deriv = FALSE)

• Matlab/Octave

1.3. API 59

libKriging, Release 0.7

% k = Kriging(...)
k.predict(x, stdev = true, cov = false, deriv = false)

Arguments

Argument Description
x Input points where the prediction must be computed.
stdev Logical . If TRUE the standard deviation is returned.
cov Logical . If TRUE the covariance matrix of the predictions is returned.
deriv Logical . If TRUE the derivatives of mean and sd of the predictions are returned.

Details

Given 𝑛⋆ “new” input points x⋆
𝑗 , the method compute the expectation, the standard deviation and (optionally) the co-

variance of the “new” observations 𝑦(x⋆
𝑗) of the stochastic process, conditional on the 𝑛 values 𝑦(x𝑖) at the input points

x𝑖 as used when fitting the model. The 𝑛⋆ input vectors (with length 𝑑) are given as the rows of a X⋆ corresponding to
x.

The computation of these quantities is often called Universal Kriging see here for more details.

Value

A list containing the element mean and possibly stdev and cov.

• The expectation in mean is the estimate of the vector E[y⋆ |y] with length 𝑛⋆ where y⋆ and y are the random
vectors corresponding to the observation and the “new” input points. Similarly the conditional standard deviation
in stdev is a vector with length 𝑛⋆ and the conditional covariance in cov is a 𝑛⋆ × 𝑛⋆ matrix.

• The (optional) derivatives are two 𝑛⋆ × 𝑑 matrices pred_mean_deriv and pred_sdtdev_deriv with their
row 𝑗 containing the vector of derivatives w.r.t. to the new input point x⋆ evaluated at x⋆ = x⋆

𝑗 . So the row 𝑗 of
pred_mean_deriv contains the derivative 𝜕x⋆E[𝑦(x⋆) |y]. evaluated at x⋆ = x⋆

𝑗 .

Note that for a Kriging object the prediction is actually an interpolation.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)
points(X, y, col = "blue", pch = 16)

k <- Kriging(y, X, "matern3_2")

x <-seq(from = 0, to = 1, length.out = 101)
p <- k$predict(x)

lines(x, p$mean, col = "blue")
(continues on next page)

60 Chapter 1. Contents

libKriging, Release 0.7

(continued from previous page)

polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)), border = NA,␣
→˓col = rgb(0, 0, 1, 0.2))

Results

1.3. API 61

libKriging, Release 0.7

Reference

• Code: https://github.com/libKriging/libKriging/blob/master/src/lib/Kriging.cpp#L1326

Kriging::simulate

Description

Simulate from a Kriging Model Object.

Usage

• Python

k = Kriging(...)
k.predict(nsim = 1, seed = 123, x)

• R

k = Kriging(...)
k$predict(nsim = 1, seed = 123, x)

• Matlab/Octave

% k = Kriging(...)
k.predict(nsim = 1, seed = 123, x)

Arguments

Argument Description
nsim Number of simulations to perform.
seed Random seed used.
x Points in model input space where to simulate.

Details

This method draws 𝑛sim paths of the stochastic process 𝑦(x) at the 𝑛⋆ given new input points x⋆
𝑗 conditional on the

values 𝑦(x𝑖) at the input points used in the fit.

62 Chapter 1. Contents

https://github.com/libKriging/libKriging/blob/master/src/lib/Kriging.cpp#L1326

libKriging, Release 0.7

Value

A matrix with length(x) rows and nsim columns containing the simulated paths at the inputs points given in x.

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)
points(X, y, col = "blue")

k <- Kriging(y, X, kernel = "matern3_2")

x <- seq(from = 0, to = 1, length.out = 101)
s <- k$simulate(nsim = 3, x = x)

lines(x, s[, 1], col = "blue")
lines(x, s[, 2], col = "blue")
lines(x, s[, 3], col = "blue")

Results

1.3. API 63

libKriging, Release 0.7

Reference

• Code: https://github.com/libKriging/libKriging/blob/master/src/lib/Kriging.cpp#L1501

NuggetKriging::predict

Description

Predict from a NuggetKriging Model Object

Usage

• Python

k = NuggetKriging(...)
k.predict(x, stdev = True, cov = False, deriv = False)

• R

64 Chapter 1. Contents

https://github.com/libKriging/libKriging/blob/master/src/lib/Kriging.cpp#L1501

libKriging, Release 0.7

k = NuggetKriging(...)
k$predict(x, stdev = TRUE, cov = FALSE, deriv = FALSE)

• Matlab/Octave

% k = NuggetKriging(...)
k.predict(x, stdev = true, cov = false, deriv = false)

Arguments

Argument Description
x Input points where the prediction must be computed.
stdev Logical . If TRUE the standard deviation is returned.
cov Logical . If TRUE the covariance matrix of the predictions is returned.
deriv Logical . If TRUE the derivatives of mean and sd of the predictions are returned.

Details

Given 𝑛⋆ “new” input points x⋆
𝑗 , the method compute the expectation, the standard deviation and (optionally) the co-

variance of the “new” observations 𝑦(x⋆
𝑗) of the stochastic process, conditional on the 𝑛 values 𝑦(x𝑖) at the input points

x𝑖 as used when fitting the model. The 𝑛⋆ input vectors (with length 𝑑) are given as the rows of a X⋆ corresponding to
x.

The computation of these quantities is often called Universal Kriging see here for more details.

Value

A list containing the element mean and possibly stdev and cov.

• The expectation in mean is the estimate of the vector E[y⋆ |y] with length 𝑛⋆ where y⋆ and y are the random
vectors corresponding to the observation and the “new” input points. Similarly the conditional standard deviation
in stdev is a vector with length 𝑛⋆ and the conditional covariance in cov is a 𝑛⋆ × 𝑛⋆ matrix.

• The (optional) derivatives are two 𝑛⋆ × 𝑑 matrices pred_mean_deriv and pred_sdtdev_deriv with their
row 𝑗 containing the vector of derivatives w.r.t. to the new input point x⋆ evaluated at x⋆ = x⋆

𝑗 . So the row 𝑗 of
pred_mean_deriv contains the derivative 𝜕x⋆E[𝑦(x⋆) |y]. evaluated at x⋆ = x⋆

𝑗 .

Note that for a NuggetKriging object if it happens that the new input x⋆ is exactly equal to one of the inputs x𝑖 then
the corresponding prediction will be equal to the corresponding observed output 𝑦𝑖. So the prediction is discontinuous
at the observations.

1.3. API 65

libKriging, Release 0.7

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 * rnorm(nrow(X))
points(X, y, col = "blue", pch = 16)

k <- NuggetKriging(y, X, "matern3_2")

x <- sort(c(X,seq(from = 0, to = 1, length.out = 101))) # include design points to see␣
→˓interpolation
p <- k$predict(x)

lines(x, p$mean, col = "blue")
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)), border = NA,␣
→˓col = rgb(0, 0, 1, 0.2))

Results

66 Chapter 1. Contents

libKriging, Release 0.7

Reference

• Code: https://github.com/libKriging/libKriging/blob/master/src/lib/NuggetKriging.cpp#L1326

NuggetKriging::simulate

Description

Simulation from a NuggetKriging model object.

Usage

• Python

k = NuggetKriging(...)
k.predict(nsim = 1, seed = 123, x)

• R

1.3. API 67

https://github.com/libKriging/libKriging/blob/master/src/lib/NuggetKriging.cpp#L1326

libKriging, Release 0.7

k = NuggetKriging(...)
k$predict(nsim = 1, seed = 123, x)

• Matlab/Octave

% k = NuggetKriging(...)
k.predict(nsim = 1, seed = 123, x)

Arguments

Argument Description
nsim Number of simulations to perform.
seed Random seed used.
x Points in model input space where to simulate.

Details

This method draws paths of the stochastic process at new input points conditional on the values at the input points used
in the fit.

Value

a matrix with length(x) rows and nsim columns containing the simulated paths at the inputs points given in x .

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 *rnorm(nrow(X))
points(X, y, col = "blue")

k <- NuggetKriging(y, X, kernel = "matern3_2")

x <- seq(from = 0, to = 1, length.out = 101)
s <- k$simulate(nsim = 3, x = x)

lines(x, s[, 1], col = "blue")
lines(x, s[, 2], col = "blue")
lines(x, s[, 3], col = "blue")

68 Chapter 1. Contents

libKriging, Release 0.7

Results

Reference

• Code: https://github.com/libKriging/libKriging/blob/master/src/lib/NuggetKriging.cpp#L1501

NoiseKriging::predict

Description

Predict from a NoiseKriging Model Object

1.3. API 69

https://github.com/libKriging/libKriging/blob/master/src/lib/NuggetKriging.cpp#L1501

libKriging, Release 0.7

Usage

• Python

k = NoiseKriging(...)
k.predict(x, stdev = True, cov = False, deriv = False)

• R

k = NoiseKriging(...)
k$predict(x, stdev = TRUE, cov = FALSE, deriv = FALSE)

• Matlab/Octave

% k = NoiseKriging(...)
k.predict(x, stdev = true, cov = false, deriv = false)

Arguments

Argument Description
x Input points where the prediction must be computed.
stdev Logical . If TRUE the standard deviation is returned.
cov Logical . If TRUE the covariance matrix of the predictions is returned.
deriv Logical . If TRUE the derivatives of mean and sd of the predictions are returned.

Details

Given 𝑛⋆ “new” input points x⋆
𝑗 , the method compute the expectation, the standard deviation and (optionally) the

covariance of the estimated values of the “trend + GP” stochastic process 𝜇(x⋆
𝑗) + 𝜁(x⋆

𝑗) at the “new” observations.
The estimation is based on the distribution conditional on the 𝑛 noisy observations 𝑦𝑖 made at the input points x𝑖 as
used when fitting the model. The 𝑛⋆ input vectors (with length 𝑑) are given as the rows of a X⋆ corresponding to x.

The computation of these quantities is often called Universal Kriging see here for more details.

Value

A list containing the element mean and possibly stdev and cov.

• The expectation in mean is the estimate of the vector E[𝜇⋆ + 𝜁⋆ |y] with length 𝑛⋆ where 𝜇⋆ and 𝜁⋆ are for
“new” points and y corresponds to the observations. Similarly the conditional standard deviation in stdev is a
vector with length 𝑛⋆ and the conditional covariance in cov is a 𝑛⋆ × 𝑛⋆ matrix.

• The (optional) derivatives are two 𝑛⋆ × 𝑑 matrices pred_mean_deriv and pred_sdtdev_deriv with their
row 𝑗 containing the vector of derivatives w.r.t. to the new input point x⋆ evaluated at x⋆ = x⋆

𝑗 . So the row 𝑗 of
pred_mean_deriv contains the derivative 𝜕x⋆E[𝑦(x⋆) |y]. evaluated at x⋆ = x⋆

𝑗 .

Note that for a NoiseKriging object the prediction is actually a smoothing. The so-called Kriging mean function
x⋆ ↦→ E[𝑦(x⋆) |y] is a smooth function. Depending on the given noise variances 𝜎2

𝑖 given in the fit step, the prediction
at x⋆ ≈ x𝑖 will be more or less close to the observed value 𝑦𝑖. As opposed to the NuggetKriging model case,
duplicated inputs can be used in the design.

70 Chapter 1. Contents

libKriging, Release 0.7

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 * rnorm(nrow(X))
points(X, y, col = "blue", pch = 16)

k <- NoiseKriging(y, (X/10)^2, X, "matern3_2")

x <-seq(from = 0, to = 1, length.out = 101)
p <- k$predict(x)

lines(x, p$mean, col = "blue")
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)),
border = NA, col = rgb(0, 0, 1, 0.2))

Results

1.3. API 71

libKriging, Release 0.7

Reference

• Code: https://github.com/libKriging/libKriging/blob/master/src/lib/NoiseKriging.cpp#L1326

NoiseKriging::simulate

Description

Simulation from a NoiseKriging model object.

Usage

• Python

k = NoiseKriging(...)
k.predict(nsim = 1, seed = 123, x)

• R

72 Chapter 1. Contents

https://github.com/libKriging/libKriging/blob/master/src/lib/NoiseKriging.cpp#L1326

libKriging, Release 0.7

k = NoiseKriging(...)
k$predict(nsim = 1, seed = 123, x)

• Matlab/Octave

% k = NoiseKriging(...)
k.predict(nsim = 1, seed = 123, x)

Arguments

Argument Description
nsim Number of simulations to perform.
seed Random seed used.
x Points in model input space where to simulate.

Details

This method draws paths of the stochastic process at new input points conditional on the values at the input points used
in the fit.

Value

a matrix with length(x) rows and nsim columns containing the simulated paths at the inputs points given in x .

Examples

f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 * rnorm(nrow(X))
points(X, y, col = "blue")

k <- NoiseKriging(y, (X/10)^2, X, kernel = "matern3_2")

x <- seq(from = 0, to = 1, length.out = 101)
s <- k$simulate(nsim = 3, x = x)

lines(x, s[, 1], col = "blue")
lines(x, s[, 2], col = "blue")
lines(x, s[, 3], col = "blue")

1.3. API 73

libKriging, Release 0.7

Results

Reference

• Code: https://github.com/libKriging/libKriging/blob/master/src/lib/NoiseKriging.cpp#L1501

1.4 Models description

1.4.1 Kriging models

Components of Kriging models

libKriging makes available several kinds of Kriging models as commonly used in the field of computer experiments.
All models involve a stochastic process 𝑦(x) indexed by a vector x ∈ R𝑑 of 𝑑 real inputs 𝑥𝑘, sometimes called the
design vector. The response variable or output 𝑦 is assumed to be observed for 𝑛 values x𝑖 of the input vector with
corresponding response values 𝑦𝑖 for 𝑖 = 1, . . ., 𝑛. The response values are considered as realizations of random
variables.

74 Chapter 1. Contents

https://github.com/libKriging/libKriging/blob/master/src/lib/NoiseKriging.cpp#L1501

libKriging, Release 0.7

The models involve the following elements or components.

• Trend A known vector-valued function R𝑑 → R𝑝 with value denoted by f(x). It is used in relation with an
unknown vector 𝛽 of trend parameters to provide the trend term 𝜇(x) = f(x)⊤𝛽.

• Smooth Gaussian Process (GP) An unobserved GP 𝜁(x), at least continuous, with mean zero and known co-
variance kernel 𝐶𝜁(x, x′).

• Nugget A White noise GP 𝜀(x) with variance 𝜏2 hence with covariance kernel 𝜏2𝛿(x, x′) where 𝛿 is the Dirac
function 𝛿(x, x′) := 1{x=x′}.

• Noise A collection of independent random variables 𝜀𝑖 with variances 𝜏2𝑖 .

Note that the words nugget and noise are sometimes considered as equivalent. Yet in libKriging nugget will be used
only when a single path is considered for the stochastic process, in which case no duplicated value can exist for the
vector of inputs.

When a nugget term is used, the process 𝑦(x) is discontinuous, so the prediction at a new value x⋆ will be identical to
𝑦(x𝑖) if it happens that x⋆ = x𝑖 for some 𝑖. We may say that the prediction is an interpolation, in relation with this
feature. However, in the usual acceptation of this term, interpolation involves the use of a smooth function, say at least
continuous.

Note The so-called Gaussian-Process Regression framework corresponds to the noisy case. However duplicated de-
signs are generally allowed and the noise r.vs are assumed to have either a common unknown variance 𝜏2 or a variance
𝜏2(x) depending on the design according to some specification.

libKriging implements the three classes "Kriging", "NoiseKriging" and "NuggetKriging" of objects corre-
sponding to Kriging models. In each class we find the linear trend, the smooth GP. The difference relates to the
presence of a nugget or noise term.

Classes of Kriging model objects

To describe the three classes of Kriging models, we assume that 𝑛 observations are given corresponding to 𝑛 input
vectors x𝑖.

• The Kriging class correspond to observations of the form

y(x𝑖) = f(x𝑖)
⊤𝛽⏟ ⏞

trend

+ 𝜁(x𝑖)⏟ ⏞
smooth GP

, 𝑖 = 1, . . . , 𝑛.

• The "NuggetKriging" class corresponds to observations of the form

y(x𝑖) = f(x𝑖)
⊤𝛽⏟ ⏞

trend

+ 𝜁(x𝑖)⏟ ⏞
smooth GP

+ 𝜀(x𝑖)⏟ ⏞
nugget

, 𝑖 = 1, . . . , 𝑛.

The sum 𝜂(x) := 𝜁(x) + 𝜀(x) defines a GP with discontinuous paths and covariance kernel 𝐶(x,x′) + 𝜏2𝛿(x, x′).

• The "NoiseKriging" class corresponds to observations of the form

𝑦𝑖 = f(x𝑖)
⊤𝛽⏟ ⏞

trend

+ 𝜁(x𝑖)⏟ ⏞
smooth GP

+ 𝜀𝑖⏟ ⏞
noise

, 𝑖 = 1, . . . , 𝑛

where the noise r.vs 𝜀𝑖 are Gaussian with mean zero and known variances 𝜏2𝑖 . Although the response 𝑦𝑖 corresponds
to the input x𝑖 as for the classes "Kriging" and "NugggetKriging", there can be several observations made at the
same input x𝑖. We may then speak of duplicated inputs.

1.4. Models description 75

libKriging, Release 0.7

Matrix formalism and assumptions

The 𝑛 input vectors x𝑖 are conveniently considered as the (transposed) rows of a matrix.

• The 𝑛× 𝑑 design or input matrix X having x⊤
𝑖 as its row 𝑖.

• The 𝑛× 𝑝 trend matrix F(X) or simply F having f(x𝑖)
⊤ as its row 𝑖.

• The 𝑛×𝑛 covariance matrixC(X, X) = [𝐶(x𝑖, x𝑗)]𝑖,𝑗 is sometimes called the Gram matrix and is often simply
denoted as C.

The observations for a Kriging model write in matrix notations y = F𝛽 + 𝜁, while those for NuggetKriging and
NoiseKriging models write as y = F𝛽 + 𝜁 + 𝜀. Similar notations are used if a sequence of 𝑛⋆ “new” designs x⋆

𝑖

are considered, resulting in matrices with 𝑛⋆ rows X⋆ and F⋆.

It must be kept in mind that unless explicitly stated otherwise, the covariance matrix C is that of the non-trend compo-
nent 𝜂 including the smooth GP plus the nugget or noise. It will be assumed that the matrix F has rank 𝑝 (hence that
𝑛 > 𝑝) and that the matrix C is positive definite. Inasmuch a positive kernel 𝐶𝜁(x, x′) is used the matrix C𝜁(X, X)
is positive definite for every design X corresponding to distinct inputs x𝑖.

Note Berlinet and Thomas-Agnan [BTA04] define Kriging models as the sum of a deterministic trend and a stochastic
process with stationary increments, as is the case for splines. So the name Kriging model is understood here in a more
restrictive way.

See the Prediction and simulation page.

1.4.2 Kriging steps

Kriging models can be used in different steps depending on the goal.

• Trend estimation If only the trend parameters 𝛽𝑘 are unknown, these can be estimated by Generalized Least
Squares. This step separates the observed response 𝑦𝑖 into a trend and component ̂︀𝜇(x𝑖) a non-trend component.
The non-trend component involves a smooth GP component ̂︀𝜁(x𝑖) and, optionally, a nugget or noise component̂︀𝜀(x𝑖) or ̂︀𝜀𝑖.

• Fit Find estimates of the parameters, including the covariance parameters. Several methods are implemented, all
relying on the optimization of a function of the covariance parameters called the objective. This objective can
relates to frequentist estimation methods: Maximum-Likelihood (ML) and Leave-One-Out Cross-Validation. It
can also be a Bayesian Marginal Posterior Density, in relation with specific priors, in which case the estimate
will be a Maximum A Posteriori (MAP). Mind that in libKriging only point estimates will be given for the
correlation parameters.

• Update Update a model object by processing 𝑛⋆ new observations. Once this step is achieved, the predictions
will be based on the full set of 𝑛 + 𝑛⋆ observations. The covariance parameters can optionally be updated by
using the new observations when computing the fitting objective.

• Predict Given 𝑛⋆ “new” inputs x⋆
𝑖 forming the rows of a matrix X⋆, compute the Gaussian distribution of y⋆

conditional on y. As long as the covariance parameters are regarded as known, the conditional distribution is
Gaussian, and is characterized by its expectation vector and its covariance matrix. These are often called the
Kriging mean and the Kriging covariance.

• Simulate Given 𝑛⋆ “new” inputs x⋆
𝑖 forming the rows of a matrix X⋆, draw a sample of 𝑛sim vectors y⋆ 𝑘 = 1,

. . ., 𝑛sim from the distribution of 𝑦(x) conditional on the observations.

By “Kriging” one often means the prediction step. The fit step is generally the most costly one in terms of computation
because the fit objective has to be evaluated repeatedly (say dozens of times) and each evaluation involves 𝑂(𝑛3)
elementary operations.

76 Chapter 1. Contents

libKriging, Release 0.7

1.4.3 Trend functions in Kriging models

The possible trend functions in libKriging are as follow, by increasing level of complexity.

• The constant trend involves 𝑝 = 1 coefficient and f(x)⊤𝛽 = 𝛽.

• The linear trend involves 𝑝 = 𝑑 + 1 coefficients

f(x)⊤𝛽 = 𝛽0 +

𝑑∑︁
𝑖=1

𝛽𝑖 𝑥𝑖.

• The interactive trend involves 1 + 𝑑 + 𝑑(𝑑− 1)/2 coefficients

f(x)⊤𝛽 = 𝛽0 +

𝑑∑︁
𝑖=1

𝑖−1∑︁
𝑗=1

𝛽𝑗𝑖 𝑥𝑗𝑥𝑖.

• The quadratic trend involves 𝑝 = 1 + 𝑑 + 𝑑(𝑑 + 1)/2 coefficients

f(x)⊤𝛽 = 𝛽0 +

𝑑∑︁
𝑖=1

𝑖∑︁
𝑗=1

𝛽𝑗𝑖 𝑥𝑗𝑥𝑖.

Starting from the constant trend, the other forms come by adding the 𝑑 linear terms 𝑥𝑖, adding the 𝑑 × (𝑑 − 1)/2
interaction terms 𝑥𝑖𝑥𝑗 with 𝑗 < 𝑖, and finally adding the squared input terms 𝑥2

𝑖 .

For instance with 𝑑 = 3 inputs the four possible trends are in order of complexity

constant f(x)⊤ = [1]

linear f(x)⊤ = [1, 𝑥1, 𝑥2, 𝑥3]

interaction f(x)⊤ = [1, 𝑥1, 𝑥2, 𝑥1𝑥2, 𝑥3, 𝑥1𝑥3, 𝑥2𝑥3]

quadratic f(x)⊤ = [1, 𝑥1, 𝑥
2
1, 𝑥2, 𝑥1𝑥2, 𝑥

2
2, 𝑥3, 𝑥1𝑥3, 𝑥2𝑥3, 𝑥

2
3]

Mind that the coefficients relate to a specific order of the inputs.

Note The number of coefficients required in the interactive and quadratic trend increases quadratically with the dimen-
sion. For 𝑑 = 10 the quadratic trend involves 66 coefficients.

1.4.4 The tensor product kernel

General form

The zero-mean smooth GP 𝜁(x) is characterized by its covariance kernel 𝐶𝜁(x,x′) := E[𝜁(x), 𝜁(x′)]. libKriging
uses a specific form of covariance kernel 𝐶𝜁(x, x′) on the input space R𝑑 which can be called tensor-product. With
h := x− x′ the kernel value expresses as

𝐶𝜁(x, x′;𝜃, 𝜎2) = 𝐶𝜁(h;𝜃, 𝜎2) = 𝜎2
𝑑∏︁

ℓ=1

𝜅(ℎℓ/𝜃ℓ)

where 𝜅(ℎ) is a stationary correlation kernel on R and 𝜃 is a vector of 𝑑 parameters 𝜃ℓ > 0 called correlation ranges.
See Stein [Ste12] for a discussion on the tensor product kernel a.k.a. separable kernel.

A further constraint used in libKriging is that 𝜅(ℎ) takes only positive values: 𝛾(ℎ) > 0 for all ℎ. With 𝜆(ℎ) :=
− log 𝛾(ℎ) the derivative w.r.t. the correlation range 𝜃ℓ can be computed as

𝜕𝜃ℓ𝐶𝜁(h; 𝜃) = 𝜃−2
ℓ 𝜆′(ℎℓ/𝜃ℓ)𝐶𝜁(h; 𝜃).

1.4. Models description 77

libKriging, Release 0.7

Available 1D correlation kernels

The 1D correlation kernels available are listed in the Table below. Remind that in this setting the smoothness of the paths
of the GP 𝜁(x) is controlled by the smoothness of the kernel 𝐶𝜁(h) at h = 0 hence by the smoothness of the correlation
kernel 𝜅(ℎ) for ℎ = 0. Note that the 1D exponential kernel is not differentiable at ℎ = 0 and the corresponding paths
are continuous but nowhere differentiable. The kernels are given in the table by order of increasing smoothness.

Note The Gaussian kernel is a radial kernel in the sense that it depends on h only through its square norm
∑︀

ℓ ℎ
2
ℓ/𝜃

2
ℓ .

kernel Name Expression
"exp" Exponential 𝜅(ℎ) = exp{−|ℎ|}
"matern3_2" Matérn whith shape 3/2 𝜅(ℎ) = [1 + 𝑧] exp{−𝑧}, 𝑧 :=

√
3 |ℎ|

"matern5_2" Matérn whith shape 5/2 𝜅(ℎ) = [1 + 𝑧 + 𝑧2/3] exp{−𝑧}, 𝑧 :=
√

5 |ℎ|
"gauss" Gaussian 𝜅(ℎ) = exp{−ℎ2/2}

1.4.5 Parameters

The parameters of the models are given in the Table below. Note that the trend parameters in 𝛽 are of a somewhat
different nature than the other ones. The parameters 𝛽𝑘 can best be compared to the values 𝜁(x𝑖) of the unobserved
GP. Indeed if no nugget or noise is used, the estimation of 𝛽 is the same thing as the estimation of 𝜁.

The trend parameters 𝛽𝑗 never appear in the objective function used to fit the models, be it of frequentist or Bayesian
nature.

Trend GP Cov Noise/Nug. Optim

"Kriging" 𝛽 [𝜃, 𝜎2] 𝜃

"NuggetKriging" 𝛽 [𝜃, 𝜎2] 𝜏2 [𝜃, 𝛼], 𝛼 := 𝜎2/(𝜎2 + 𝜏2)
"NoiseKriging" 𝛽 [𝜃, 𝜎2] [𝜏2𝑖] [𝜃, 𝜎2]

Parameters used for the trend, the smooth GP and the noise or nugget parts. The column Optim is for the parameters
used in the optimization. The other parameters are either known as [𝜏2𝑖] or marginalized out, or replaced by their MLE
𝛽.}

1.4.6 Functional point of view

For the models used with libKriging, both the trend functions and the covariance kernel have an impact. While a GP
model for 𝜁(x) relates to a covariance kernel and to the corresponding Reproducing Kernel Hilbert Space (RKHS),
a Kriging model as described in Kriging models relates to a semi-RKHS Berlinet and Thomas-Agnan [BTA04]. This
space ℋ is a semi-Hilbert space of functions in which the trend functions 𝑓𝑘 generate a finite-dimensional linear sub-
space ℱ called the nullspace which contains so-called unpenalized functions i.e., functions with (semi) norm zero.

When the covariance parameters are known, Kriging provides as the Kriging mean the function ℎ ∈ ℋwhich minimises
the Penalized Sum of Squares (PSS) criterion

PSS :=
1

𝜏2

𝑛∑︁
𝑖=1

{𝑦𝑖 − ℎ(x𝑖)}2 + ‖ℎ‖2ℋ.

In the case where no nugget is used (corresponding to 𝜏2 → 0), the discrete sum in the PSS criterion is actually zero at
the optimum so that ℎ interpolates the data and has minimal norm ‖.‖ℋ amongst the functions ℎ ∈ ℋ that interpolates
the data. We may regard Kriging as using a prior on a functional space, with an implied non-informative prior for

78 Chapter 1. Contents

libKriging, Release 0.7

the trend part. At the right-hand side of the equation above, the first term can be regarded as −2 log𝐿 where 𝐿 is the
likelihood while the square norm can formally be regarded as −2 log 𝜋(ℎ) where 𝜋(ℎ) is a prior density, although this
is not tenable from a theoretical point of view. By minimizing PSS, we get the function ℎ with maximum posterior
density which is also the posterior mean.

The Kriging framework is similar to the splines framework, but as opposed to the later one, the trend functions are
chosen quite arbitrarily and may also belong to the RKHS of the kernel. This will indeed be the case when 𝑑 = 1
and a constant trend is used with one of the kernels available in libKriging: the constant trend function is therefore
unpenalized, which makes the Kriging smoothing and the Kriging prediction behaves well w.r.t. a translation of the
observations y → y + Cst: the predicted values are then translated similarly. The function ℎ ∈ ℋ minimizing the
criterion PSS above can be written in a non-unique way as

ℎ(x) =

𝑛∑︁
𝑖=1

𝛼𝑖 𝐶(x𝑖, x) +

𝑝∑︁
𝑘=1

𝛽𝑘𝑓𝑘(x),

and Kriging indeeds find suitable vectors 𝛼 and 𝛽. The representation of ℎ can be made unique by imposing orthog-
onality constraints, see The Bending Energy Matrix. See Wahba [Wah78] for the use of an improper prior on the
coefficients of the trend functions.

Note Allowing for a non-informative trend has an important implication in terms of implementation since Universal
Kriging equations must be used. By contrast, an informative trend can be coped with by using only Simple Kriging
equations and sum of kernels. Indeed the informative trend corresponds to a kernel of the form f(x)⊤Af(x) where A
is a 𝑝×𝑝 positive definite matrix. The informative approach is most often retained in the Machine Learning community.

1.4.7 Trend estimation

Generalized Least Squares

Using 𝑛 given observations 𝑦𝑖, we can estimate the trend at the inputs x𝑖. For that aim we must find an estimate ̂︀𝛽 of
the unknown vector 𝛽. When no nugget or noise is used, the GP part comes as the difference ̂︀𝜁 = y − F̂︀𝛽. When
instead a nugget or a noise is present a further step is needed to separate the smooth GP part from the nugget or noise
in y − F̂︀𝛽.

If the covariance parameters are known, the estimate ̂︀𝛽 can be obtained by using General Least Squares (GLS); this
estimate is also the Maximum Likelihood estimate. The computations related to GLS can rely on the Cholesky and the
QR decompositions of matrices as now detailed.

The "Kriging" case

In the "Kriging" case, we have C = 𝜎2R where R is the correlation matrix depending on 𝜃. If the correlation matrix
R is known, then the ML estimate of 𝛽 and its covariance are given by

̂︀𝛽 =
[︀
F⊤R−1F

]︀−1
F⊤R−1y, Cov(̂︀𝛽) = 𝜎2[F⊤R−1F]−1.

Moreover the ML estimate ̂︀𝜎2 is available as well.

In practice we can use the Cholesky decomposition R = LL⊤ where L is a 𝑛×𝑛 lower triangular matrix with positive
diagonal elements. By left-multiplying the relation y = F𝛽 + 𝜁 by L−1, we get

y† = F†𝛽 + 𝜁†

where the “dagged” symbols indicate a left multiplication by L−1 e.g., y† = L−1y. We get a standard linear regression
with i.i.d. Gaussian errors 𝜁†𝑖 having zero mean and variance 𝜎2. So the ML estimates ̂︀𝛽 and ̂︀𝜎2 come by Ordinary

1.4. Models description 79

libKriging, Release 0.7

Least Squares. Using ̂︀𝜁 = y − F̂︀𝛽 and 𝜁† := L−1̂︀𝜁 we have

̂︀𝜎2
ML =

1

𝑛
𝑆2, with 𝑆2 := ̂︀𝜁†⊤̂︀𝜁† = ̂︀𝜁⊤R−1̂︀𝜁.

Note that ̂︀𝜎2
ML is a biased estimate of 𝜎2. An alternative unbiased estimate can be obtained by using 𝑛− 𝑝 instead of 𝑛

as the denominator: this is the so-called Restricted Maximum Likelihood (REML) estimate.

The computations rely on the so-called “thin” or “economical” QR decomposition of the transformed trend matrix F†

F† = QF†RF†

where QF† is a 𝑛 × 𝑝 orthogonal matrix and RF† is a 𝑝 × 𝑝 upper triangular matrix. The orthogonality means that
Q⊤

F†QF† = I𝑝. The estimate ̂︀𝛽 comes by solving the triangular system RF†𝛽 = Q⊤
F†y

†, and the covariance of the
estimate is Cov(̂︀𝛽) = R−1

F†R
−⊤
F†

Following a popular linear regression trick, one can further use the QR decomposition of the matrix F†
+ obtained by

adding a new column y† to F†

F†
+ :=

[︀
F† |y†]︀ = QF†

+
RF†

+
.

Then the 𝑝 + 1 column of QF†
+

contains the vector of residuals ̂︀𝜁† = y† −F†̂︀𝛽 in its first 𝑝 elements and the residual
sum of squares is given by the square of the element 𝑅F†

+
[𝑝 + 1, 𝑝 + 1]. See Lange [Lan10].

"NuggetKriging" and "NoiseKriging"

When a nugget or noise term is used, the estimate of 𝛽 can be obtained as above provided that the covariance matrix is
that of the non-trend component hence includes the nugget or noise variance in its diagonal. In the NuggetKriging
case the GLS will provide an estimate of the variance 𝜈2 = 𝜎2 + 𝜏2 but the ML estimate of 𝜎2 can only be obtained
by using a numerical optimization providing the ML estimate of 𝛼 from which the estimate of 𝜎2 is found.

The Bending Energy Matrix

Since ̂︀𝛽 is a linear function of y we have

[y − F̂︀𝛽]⊤C−1[y − F̂︀𝛽] = y⊤By

where the 𝑛× 𝑛 matrix B called the Bending Energy Matrix (BEM) is given by

B = C−1 −C−1F
[︀
F⊤C−1F

]︀−1
F⊤C−1.

The 𝑛× 𝑛 matrix B is such that BF = 0 which means that the columns of F are eigenvectors of B with eigenvalue 0.
If C is positive definite and F has full column rank as assumed, then B has rank 𝑛− 𝑝.

In the special case where no trend is used i.e., 𝑝 = 0 the bending energy matrix can consistently be defined asB := C−1,
the trend matrix F then being a matrix with zero columns and the vector 𝛽 being of length zero.

The BEM matrix is closely related to smoothing since the trend and GP component of y are given by

y = ̂︀𝜇⏟ ⏞
trend

+ ̂︀𝜂⏟ ⏞
GP

= [I𝑛 −CB]y + CBy.

The matrix I𝑛 −CB is the matrix of the orthogonal projection on the linear space spanned by the columns of F in R𝑛

equipped with the inner product ⟨z, z′⟩C−1 := z⊤C−1z′.

80 Chapter 1. Contents

libKriging, Release 0.7

Note The BEM does not depend on the specific basis used to define the linear space of trend functions. It also de-
pends on the kernel only through the reduced kernel related to the trend linear space, see Pronzato [Pro19]. So the
eigen-decomposition of the BEM provides useful insights into the model used such as the so-called Principal Kriging
Functions

The BEM B can be related to the matrices C and F by a block inversion[︂
C F
F⊤ 0

]︂−1

=

[︂
B U
U⊤ V

]︂
with

{︃
V := −[F⊤C−1F]−1

U := −C−1FV

where the inverse exists provided that F has full column rank, the kernel being assumed to be definite positive.

The relation can be derived by using the so-called kernel shift functions x ↦→ 𝐶(x, x𝑖) to represent the GP component
of 𝑦(x) in the Kriging mean function

ℎ(x) =

𝑛∑︁
𝑖=1

𝛼𝑖 𝐶(x𝑖, x)⏟ ⏞
GP

+

𝑝∑︁
𝑘=1

𝛽𝑘𝑓𝑘(x)⏟ ⏞
trend

.

In the case where the model has no nugget or noise, using the 𝑛 observations 𝑦𝑖 we can find the 𝑛 + 𝑝 unknown
coefficients 𝛼𝑖 and 𝛽𝑘 by imposing the orthogonality constraints F⊤𝛼 = 0𝑝, leading to the linear system[︂

C F
F⊤ 0

]︂ [︂
𝛼
𝛽

]︂
=

[︂
y
0

]︂
,

see Mardia et al. [MKGL96].

It turns out that the trend part of the solution is then identical to the GLS estimate ̂︀𝛽.

If 𝑛⋆ “new” inputs x⋆
𝑗 are given in a matrix X⋆, then with C⋆ := C(X⋆, X) and F⋆ := F(X⋆) the prediction writes

in blocks form as

̂︀y⋆ =
[︀
C⋆ F⋆

]︀ [︂̂︀𝛼̂︀𝛽
]︂

=
[︀
C⋆ F⋆

]︀ [︂ B U
U⊤ V

]︂ [︂
y
0

]︂
.

1.4.8 Prediction and simulation

Framework

Consider first the cases where the observations 𝑦𝑖 are from a stochastic process 𝑦(x) namely the Kriging and the
NuggetKriging cases. Consider 𝑛⋆ “new” inputs x⋆

𝑗 given as the rows of a 𝑛⋆ × 𝑑 matrix X⋆ and the random vector
of “new” responses y⋆ := [𝑦(x⋆

1), . . . , 𝑦(x⋆
𝑛⋆)]⊤. The distribution of y⋆ conditional on the observations y is known:

this is a Gaussian distribution, characterized by its mean vector and its covariance matrix

E[y⋆ |y] and Cov[y⋆ |y].

The computation of this distribution is often called Kriging, and more precisely Universal Kriging when a linear trend
𝜇(x) = f(x)⊤𝛽 and a smooth unobserved GP 𝜁(x) are used, possibly with a nugget GP 𝜀(x). Interestingly, the
computation can provide estimates ̂︀𝜇(x), ̂︀𝜁(x) and ̂︀𝜀(x) for the unobserved components: trend, smooth GP and nugget.

In the noisy case "NoiseKriging”, the observations 𝑦𝑖 are noisy versions of the “trend + GP” process 𝜂(x) := 𝜇(x)+
𝜁(x). Under the assumption that the 𝜀𝑖 are Gaussian, the distribution of the random vector𝜂⋆ := [𝜂(x⋆

1), . . . , 𝜂(x⋆
𝑛⋆)]⊤

conditional on the observations y is a Gaussian distribution, characterized by its mean vector and its covariance matrix
that can be computed by using the same Kriging equations as for the previous cases.

• The predict method will provide the conditional expectation E[y⋆ |y] or E[𝜂⋆ |y] a.k.a the Kriging mean.
The method can also provide the vector of conditional standard deviations or the conditional covariance matrix
which can be called Kriging standard deviation or Kriging covariance.

1.4. Models description 81

libKriging, Release 0.7

• The simulatemethod generates partial observations from paths of the process 𝜂(x) - or 𝑦(x) in the non noisy-
cases- conditional on the known observations. More precisely, the method returns the values 𝑦[𝑘](x⋆

𝑗) at the new
design points for 𝑛sim independent drawings 𝑘 = 1, . . ., 𝑛sim of the process conditional on the observations 𝑦𝑖 for
𝑖 = 1, . . ., 𝑛. So if 𝑛sim is large the average 𝑛−1

sim

∑︀𝑛sim
𝑘=1 𝑦

[𝑘](x⋆
𝑗) should be close to the conditional expectation

given by the predict method.

In order to give more details on the prediction, the following notations will be used.

• F⋆ := F(X⋆) is the “new” trend matrix with dimension 𝑛⋆ × 𝑝.

• C⋆ := C(X⋆, X) is the 𝑛⋆ × 𝑛 covariance matrix between the new and the observation inputs. When 𝑛⋆ = 1
we have row matrix.

• C⋆⋆ := C(X⋆, X⋆) is the 𝑛⋆ × 𝑛⋆ covariance matrix for the new inputs.

We will assume that the design matrix F used in the first step has rank 𝑝, implying that 𝑛 > 𝑝 observations are used.

The Kriging prediction

Non-noisy cases Kriging and NuggetKriging

If the covariance kernel is known, the Kriging mean is given by

E[y⋆ |y] = F⋆̂︀𝛽⏟ ⏞
trend

+ C⋆C−1[y − F̂︀𝛽]⏟ ⏞
GP

,

where ̂︀𝛽 stands for the GLS estimate of 𝛽. At the right-hand side the first term is the prediction of the trend and the
second term is the simple Kriging prediction for the GP part 𝜁⋆ where the estimation ̂︀𝜁 = y − F̂︀𝛽 is used as if it was
containing the unknown observations 𝜁. The Kriging covariance is given by

Cov[y⋆ |y] = [F⋆ − ̂︀F⋆] Cov(̂︀𝛽) [F⋆ − ̂︀F⋆]⊤⏟ ⏞
trend

+ C⋆⋆ −C⋆C−1C⋆⊤⏟ ⏞
GP

,

where ̂︀F⋆ := C⋆C−1F is the simple Kriging prediction of the trend matrix. At the right-hand side, the first term
accounts for the uncertainty due to the trend. It disappears if the estimation of 𝛽 is perfect or if the trend functions are
perfectly predicted by Kriging. The second and third terms are the unconditional covariance of the GP part and the
(co)variance reduction due to to the correlation of the GP between the observations and the new inputs.

Note The conditional covariance can be expressed as

Cov[y⋆ |y] = C⋆⋆ −
[︀
C⋆ F⋆

]︀ [︂ C F
F⊤ 0

]︂−1 [︂
C⋆⊤

F⋆⊤

]︂
.

The block square matrix to be inverted is not positive hence its inverse is not positive either. So the prediction covariance
can be larger than the conditional covariance C⋆⋆ of the GP. This is actually the case in the classical linear regression
framework corresponding to the GP 𝜁(x) being a white noise.

Note Since a stationary GP 𝜁(x) is used in the model, the “Kriging prediction” returns to the trend: for a new input x⋆

which is far away from the inputs used to fit the model, the prediction ̂︀𝑦(x⋆) tends to the estimated trend f(x⋆)⊤̂︀𝛽.

82 Chapter 1. Contents

libKriging, Release 0.7

Noisy case NoiseKriging

In the noisy case we compute the expectation and covariance of 𝜂⋆ conditional on the observations in y. The formulas
are identical to those used for y⋆ above. The matrices C⋆ and C⋆⋆ relate to the covariance kernel of the GP 𝜂(x) yet
for the matrix C, the provided noise variances 𝜎2

𝑖 must be added to the corresponding diagonal terms.

Plugging the covariance parameters into the prediction

In libKriging the prediction is computed by plugging the correlation parameters 𝜃 i.e., by replacing these by their esti-
mate obtained by optimizing the chosen objective: log-likelihood, Leave-One-Out Sum of Squared Errors, or marginal
posterior density. So the ranges 𝜃ℓ are regarded as perfectly known. Similarly the GP variance 𝜎2 and and the nugget
variance 𝜏2 are replaced by their estimates.

Note Mind that the expression predictive distribution used in Gu et al. [GWB18] is potentially misleading since the
correlation parameters are simply plugged into the prediction instead of being marginalized out of the distribution of
y⋆ conditional on y.

Confidence interval on the Kriging mean

Consistently with the non-parametric regression framework 𝑦 = ℎ(x)+𝜀 where ℎ is a function that must be estimated,
we can speak of a confidence interval on the unknown mean at a “new” input point x⋆. It must be understood that
the confidence interval is on the smooth part “trend + smooth GP” ℎ(x⋆) = 𝜇(x⋆) + 𝜁(x⋆) of the stochastic process
regarded as an unknown deterministic quantity. The “trend + smooth GP” model provides a prior for the unknown
function ℎ and the posterior distribution for ℎ(x⋆) is the Gaussian distribution provided by the Kriging prediction.

Some variants of the confidence interval can easily be implemented. In the Kriging case here no nugget or noise
is used, the maximum likelihood estimate of 𝜎2 is biased but the restricted maximum-likelihood estimate ̂︀𝜎2

REML =̂︀𝜎2
ML × 𝑛/(𝑛− 𝑝) is unbiased. Also the quantiles of the Student distribution with 𝑛− 𝑝 degree of freedom can be used

in place of those of the normal distribution to account for the uncertainty on 𝜎2. The same ideas can be used for the
"NuggetKriging" and "NoiseKriging" cases.

Derivative w.r.t. the input

The derivative (or gradient) of the prediction mean and of the standard deviation vector with respect to the input vector
x⋆ can be optionally provided. These derivatives are required in Bayesian Optimization. The derivatives are obtained
by applying the chain rule to the expressions for the expectation and the variance.

1.4.9 Maximum likelihood

General form of the likelihood

The general form of the likelihood is

𝐿(𝜓, 𝛽; y) =
1

[2𝜋]
𝑛/2

1

|C|1/2
exp

{︂
−1

2
[y − F𝛽]

⊤
C−1 [y − F𝛽]

}︂
where 𝜓 is the vector of covariance parameters which depend on the specific Kriging model used, see the section
Parameters. The notation |C| is for the determinant of the matrix C.

1.4. Models description 83

libKriging, Release 0.7

Profile likelihood

In the ML framework it turns out that at least the ML estimate ̂︀𝛽 of the trend coefficient vector can be computed by GLS
as exposed in Section Generalized Least Squares. Moreover the GLS step can provide an estimate of the variance for
the non-trend part component i.e., the difference between the response and the trend part. See Roustant et al. [RGD12].

This allows the maximization of a profile likelihood function 𝐿prof depending on a smaller number of parameters.
In practice the log-likelihood ℓ := log𝐿 and the log-profile likelihood ℓprof := log𝐿prof are used. The profile log-
likelihood functions are detailed and summarized in the Table below.

Remind that if we replace 𝛽 by its estimate ̂︀𝛽 in the sum of squares used in the log-likelihood, we get a quadratic form
of y [︁

y − F̂︀𝛽]︁⊤ C−1
[︁
y − F̂︀𝛽]︁ = y⊤By

where B is the Bending Energy Matrix (BEM).

"Kriging"

In the "Kriging" case whereC = 𝜎2 R(𝜃), both the ML estimates ̂︀𝛽 and ̂︀𝜎2 are provided by GLS. So these parameters
are “concentrated out of the likelihood” and we can use the profile likelihood function depending on 𝜃 only𝐿prof(𝜃) :=

𝐿(𝜃, ̂︀𝜎2, ̂︀𝛽) where both ̂︀𝜎2 and ̂︀𝛽 depend on 𝜃.

"NuggetKriging"

In the "NuggetKriging" case, beside the vector 𝜃 of correlation ranges and instead of the couple of parameters
[𝜎2, 𝜏2] or [𝜎2, 𝛼] we can use the couple [𝜈2, 𝛼] defined by

𝜈2 := 𝜎2 + 𝜏2, 𝛼 := 𝜎2/𝜈2

and which can be named the total variance and the variance ratio. The covariance matrix used in the likelihood is then

C = 𝜎2R(𝜃) + 𝜏2I = 𝜈2 {𝛼R(𝜃) + (1 − 𝛼)I𝑛} = 𝜈2R𝛼(𝜃),

where R𝛼 is a correlation matrix. As for the Kriging case the ML estimate ̂︀𝜈2 can be obtained by GLS as ̂︀𝜈2 = 𝑆2/𝑛.
Therefore we can use a profile likelihood function depending on the correlation ranges 𝜃 and the variance ratio 𝛼,
namely 𝐿prof(𝜃, 𝛼) := 𝐿(𝜃, ̂︀𝜈2, ̂︀𝛽).

"NoiseKriging"

The covariance matrix to be used in the likelihood is

C = 𝜎2R(𝜃) + diag([𝜏2𝑖])

where the noise variances 𝜏2𝑖 are known. In this case the parameter 𝜎2 can no longer be concentrated out and the
profile likelihood to be maximized is a function of 𝜃 and 𝜎2 with only the trend parameter being concentrated out
𝐿prof(𝜃, 𝜎

2) := 𝐿(𝜃, ̂︀𝛽).

84 Chapter 1. Contents

libKriging, Release 0.7

Table

The following table gives the profile log-likelihood for the different forms of Kriging models. The sum of squares 𝑆2

is given by 𝑆2 = e⊤C̊−1e where e := y − F̂︀𝛽 is the estimated non-trend component and C̊ is the correlation matrix
(equal to R or R𝛼).

"Kriging" −2ℓprof(𝜃) = log|R| + 𝑛 log𝑆2

"NuggetKriging" −2ℓprof(𝜃, 𝛼) = log|R𝛼| + 𝑛 log𝑆2

"NoiseKriging” −2ℓprof(𝜃, 𝜎
2) = log|C| + e⊤C−1e

Note that ̂︀𝛽 and e depend on the covariance parameters as do the correlation or covariance matrix. The profile log-
likelihood are given up to additive constants. The sum of squares𝑆2 can be expressed as 𝑆2 = y⊤B̊y where B̊ := 𝜎2B
is a scaled version ot the Bending Energy matrix B.

Derivatives w.r.t. the parameters

In the three cases, the symbolic derivatives of the log-profile likelihood w.r.t. the parameters can be obtained by chain
rule hence be used in the optimization routine.

1.4.10 Leave-one-out

Consider 𝑛 observations 𝑦𝑖 from a Kriging model corresponding to the “Kriging” case with no nugget or noise. For
𝑖 = 1, . . ., 𝑛 let ̂︀𝑦𝑖|−𝑖 be the prediction of 𝑦𝑖 based on the vector y−𝑖 obtained by omitting the observation 𝑖 in y. The
vector of leave-one-out (LOO) predictions is defined by

̂︀yLOO := [̂︀𝑦1|−1, . . . , ̂︀𝑦𝑛|−𝑛]⊤,

and the leave-one-out Sum of Square Errors criterion is defined by

SSELOO :=

𝑛∑︁
𝑖=1

{𝑦𝑖 − ̂︀𝑦𝑖|−𝑖}2 = ‖y − ̂︀yLOO‖2.

It can be shown that

y − ̂︀yLOO = D−1
B By

where B is the Bending Energy Matrix (BEM) and DB is the diagonal matrix with the same diagonal as B.

By minimizing SSELOO with respect to the covariance parameters 𝜃ℓ we get estimates of these. Note that similarly to
the profile likelihood, the LOO MSE does not depend on the vector 𝛽 of trend parameters.

An estimate of the GP variance 𝜎2 is given by

̂︀𝜎2
LOO =

1

𝑛
y⊤B̊D−1

B̊
B̊y

where B̊ := 𝜎2B does not depend on 𝜎2 and DB̊ is the diagonal matrix having the same diagonal as B̊.

The LOO estimation can be preferable to the maximum-likelihood estimation when the covariance kernel is mispecified,
see Bachoc [Bac12] who provides many details on the criterion SSELOO, including its derivatives.

1.4. Models description 85

libKriging, Release 0.7

1.4.11 Bayesian marginal analysis

Motivation and general form of prior

Berger, De Oliveira, and Sansó have shown that the ML estimation of Kriging models often gives estimated rangeŝ︀𝜃𝑘 = 0 or ̂︀𝜃𝑘 = ∞, leading to poor predictions. Although finite positive bounds can be imposed in the optimization
to address this issue, the bounds are quite arbitrary. Berger, De Oliveira, and Sansó have shown that one can instead
replace the ML estimates by the marginal posterior mode in a Bayesian analysis. Provided that suitable priors are used,
it can be shown that the estimated ranges will be both finite and positive: 0 < ̂︀𝜃𝑘 < ∞.

Note In libKriging the Bayesian approach will be used only to provide alternatives to the ML estimation of the range
or correlation parameters. The Bayesian inference on these parameters will not be achieved. Rather than the profile
likelihood, a so-called marginal likelihood will be used.

In this section we switch to a Bayesian style of notations. The vector of parameters is formed by three blocks: the vector
𝜃 of correlation ranges, the GP variance 𝜎2 and the vector 𝛽 of trend parameters. A major concern is the elicitation of
the prior density 𝜋(𝜃, 𝜎2, 𝛽).

Objective priors of Gu et al

A natural idea is that the prior should not provide information about 𝛽, implying the use of improper probability
densities. With the factorization

𝜋(𝜃, 𝜎2, 𝛽) = 𝜋(𝛽 |𝜃, 𝜎2) × 𝜋(𝜃, 𝜎2),

a further assumption is that the trend parameter vector 𝛽 is a priori independent of the covariance parameters 𝜃 and
𝜎2, and that the prior for 𝛽 is an improper prior with constant density

𝜋(𝛽 |𝜃, 𝜎2) = 𝜋(𝛽) ∝ 1.

Then the problem boils down to the choice of the joint prior 𝜋(𝜃, 𝜎2).

In the case where no nugget or noise is used, an interesting choice is

𝜋(𝜃, 𝜎2) =
𝜋(𝜃)

(𝜎2)𝑎

with 𝑎 > 0. With this specific form the result of the integration of the likelihood or of the posterior density with respect
to 𝜎2 and 𝛽 is then known in closed form.

Fit: Bayesian marginal analysis

In the Kriging case, the marginal likelihood a.k.a. integrated likelihood for 𝜃 is obtained by marginalizing the GP
variance 𝜎2 and the trend parameter vector 𝛽 out of the likelihood according to

𝐿marg(𝜃; y) := 𝑝(y |𝜃) ∝
∫︁

𝑝(y |𝜃, 𝜎2, 𝛽)
1

𝜎2𝑎
d𝜎2 d𝛽,

where 𝑝(y |𝜃, 𝜎2, 𝛽) is the likelihood 𝐿(𝜃, 𝜎2, 𝛽; y). We get a closed expression given in the table below. Now for
a prior having the form (1), the marginal posterior factorizes as

𝑝marg(𝜃 |y) ∝ 𝜋(𝜃) × 𝐿marg(𝜃; y).

In the NuggetKriging case, the same approach can be used, but the parameter used for the nugget is not marginalized
out so it remains an argument of the marginal likelihood. In libKriging the nugget parameter is taken as𝛼 := 𝜎2/(𝜎2+
𝜏2) where 𝜏2 is the nugget variance. We then have the factorization

𝑝marg(𝜃, 𝛼 |y) ∝ 𝜋(𝜃, 𝛼) × 𝐿marg(𝜃, 𝛼; y).

86 Chapter 1. Contents

libKriging, Release 0.7

Note The marginal likelihood differs from the frequentist notion attached to this name. But it also differs from the
marginal likelihood as often used in the GP community e.g., in Rasmussen and Williams [RW06] where the marginal-
ization is for the values 𝜁 of the unobserved GP hence is nothing but the likelihood descrided in this section.

Table of marginal likelihood functions

The following table gives the marginal log-likelihood for the different forms of Kriging models. The sum of squares
𝑆2 is given by 𝑆2 := e⊤C̊−1e where e := y − F̂︀𝛽 and C̊ is the correlation matrix (equal to R or R𝛼). The sum of
squares 𝑆2 can be expressed as 𝑆2 = y⊤B̊y where B̊ := 𝜎2B is a scaled version ot the Bending Energy matrix B.

"Kriging" −2ℓmarg(𝜃) = log|R| + log|F⊤R−1F| + (𝑛− 𝑝 + 2𝑎− 2) log𝑆2

"NuggetKriging" −2ℓmarg(𝜃, 𝛼) = log|R𝛼| + log|F⊤R−1
𝛼 F| + (𝑛− 𝑝 + 2𝑎− 2) log𝑆2

"NoiseKriging" not used

It can be interesting to compare this table with the table of profile log-likelihoods.

Reference prior for the correlation parameters [not implemented yet]

For the case when no nugget or noise is used, Berger, De Oliveira, and Sansó define the reference joint prior for 𝜃 and
𝜎2 in relation to the integrated likelihood where only the trend parameter 𝛽 is marginalized out, that is 𝑝(y |𝜃, 𝜎2) =∫︀
𝑝(𝜃, 𝜎2, 𝛽) d𝛽 and they show that it has the form

𝜋ref(𝜃, 𝜎
2) =

𝜋ref(𝜃)

𝜎2

where 𝜋ref(𝜃) no longer depends on 𝜎2.

We now give some hints on the derivation and the computation of the reference prior. Let I⋆(𝜃, 𝜎2) be the (𝑑 + 1) ×
(𝑑 + 1) Fisher information matrix based on the marginal log-likelihood ℓmarg(𝜃, 𝜎

2) = log𝐿marg(𝜃, 𝜎
2)

I⋆(𝜃, 𝜎2) :=

⎡⎣−E
{︁

𝜕2

𝜕𝜃𝜕𝜃⊤ ℓmarg(𝜃, 𝜎
2)
}︁

−E
{︁

𝜕2

𝜕𝜎2𝜕𝜃⊤ ℓmarg(𝜃, 𝜎
2)
}︁

−E
{︁

𝜕2

𝜕𝜎2𝜕𝜃 ℓmarg(𝜃, 𝜎
2)
}︁

−E
{︁

𝜕2

𝜕𝜎2𝜕𝜎2 ℓmarg(𝜃, 𝜎
2)
}︁
⎤⎦ =:

[︂
H u⊤

u 𝑏

]︂
.

One can show that this information matrix can be expressed by using the 𝑛 × 𝑛 symmetric matrices N𝑘 :=
L−1 [𝜕𝜃𝑘R]L−⊤ where L is the lower Cholesky root of the correlation matrix according to

H =
1

2

⎡⎢⎢⎢⎣
tr(N1N1) tr(N1N2) . . . tr(N1N𝑝)
tr(N2N1) tr(N2N2) . . . tr(N2N𝑝)

...
...

...
tr(N𝑝N1) tr(N𝑝N2) . . . tr(N𝑝N𝑝)

⎤⎥⎥⎥⎦ , u =
1

2𝜎2

⎡⎢⎢⎢⎣
tr(N1)
tr(N2)

...
tr(N𝑝)

⎤⎥⎥⎥⎦ , 𝑏 =
𝑛− 𝑝

2𝜎4
.

By multiplying by 𝜎2 both the last row and the last column of I⋆(𝜃, 𝜎2) corresponding to 𝜎2, we get a new (𝑑 + 1) ×
(𝑑+ 1) matrix say I⋆(𝜃) which no longer depends on 𝜎2, the notation I⋆(𝜃) being consistent with Gu et al. [GWB18].
Then 𝜋ref(𝜃) = |I⋆(𝜃)|1/2.

Note that the determinant expresses as

|I⋆(𝜃)| = |H| ×
⃒⃒
𝑛− 𝑝− ů⊤H−1ů

⃒⃒
where ů := 𝜎2u. See Gu [Gu16] for details.

1.4. Models description 87

libKriging, Release 0.7

Note The information matrix takes the blocks in the order: “𝜃 then 𝜎2”, while the opposite order is used in Gu [Gu16].

The reference prior suffers from its high computational cost. Indeed, in order to get the value of the prior density one
needs the derivatives of the correlation matrix R and in order to use the derivatives of the prior to find the posterior
mode, the second order derivatives of R are required. An alternative is the following so-called Jointly robust prior.

The “Jointly Robust” prior of Gu

Gu [Gu19] defines an easily computed prior called the Jointly Robust (JR) prior. This prior is implemented in the R
package RobustGaSP. In the nugget case the prior is defined with some obvious abuse of notation by

𝜋JR(𝜃, 𝜎
2, 𝛼) ∝ 𝜋JR(𝜃, 𝛼)

𝜎2

where as above 𝛼 := 𝜎2/(𝜎2 + 𝜏2) so that the nugget variance ratio 𝜂 := 𝜏2/𝜎2 of Gu [Gu19] is 𝜂 = (1−𝛼)/𝛼. The
JR prior corresponds to

𝜋JR(𝜃, 𝛼) ∝ 𝑡𝑎JR exp{−𝑏JR𝑡} 𝑡 :=
1 − 𝛼

𝛼
+

𝑑∑︁
ℓ=1

𝐶ℓ

𝜃ℓ
,

where 𝑎JR > −(𝑑 + 1) and 𝑏JR > 0 are two hyperparameters and 𝐶ℓ is proportional to the range 𝑟ℓ of the column ℓ in
X

𝐶ℓ = 𝑛−1/𝑑 × 𝑟ℓ, 𝑟ℓ := max
𝑖

{𝑋𝑖ℓ} − min
𝑖
{𝑋𝑖ℓ}.

The values of 𝑎JR and 𝑏JR are chosen as

𝑎JR := 0.2, 𝑏JR := 𝑛−1/𝑑 × (𝑎JR + 𝑑).

Note that as opposed to the objective prior described above, the JR prior does not depend on the specific kernel chosen
for the GP. However the integration w.r.t. 𝜎2 and 𝛽 is the same as for the reference prior, which means that the marginal
likelihood is the same as for the reference prior above corresponding to 𝑎 = 1 in the prior (1) above.

Caution The parameter 𝑎JR is denoted by 𝑎 in Gu [Gu19] and in the code of libKriging. It differs from the exponent
𝑎 of 𝜎−2 used above.

1.5 References

88 Chapter 1. Contents

BIBLIOGRAPHY

[Bac12] François Bachoc. Parametric Estimation of Covariance Function in Gaussian-Process based Kriging Mod-
els. Application to Uncertainty Quantification for Computer Experiments. PhD thesis, Université Paris
Diderot, 2012.

[BDOS01] James O. Berger, Victor De Oliveira, and Bruno Sansó. Objective Bayesian Analysis of Spa-
tially Correlated Data. Journal of the American Statistical Association, 96(456):1361–1374, 2001.
doi:10.1198/016214501753382282.

[BTA04] Alain Berlinet and Christine Thomas-Agnan. Reproducing Kernel Hilbert Space in Probability and Statis-
tics. Springer, 2004. doi:10.1007/978-1-4419-9096-9.

[Gu16] Mengyang Gu. Robust Uncertainty Quantification and Scalable Computation for Computer Models with
Massive Output. PhD thesis, Duke University, 2016. URL: https://hdl.handle.net/10161/12882.

[Gu19] Mengyang Gu. Jointly Robust Prior for Gaussian Stochastic Process in Emulation, Calibration and Variable
Selection. Bayesian Analysis, 14(3):857–885, 2019. doi:10.1214/18-BA1133.

[GWB18] Mengyang Gu, Xiaojing Wand, and James O. Berger. Robust Gaussian Stochastic Process Emulation. An-
nals of Statistics, 46(6A):3038–3066, 2018. doi:10.1214/17-AOS1648.

[Lan10] Kenneth Lange. Numerical Analysis for Statisticians. Statistics & Computing. Springer-Verlag, 2nd edition,
2010. doi:10.1007/978-1-4419-5945-4.

[MKGL96] Kantilal V. Mardia, John T. Kent, Colin R. Goodall, and John A. Little. Kriging and Splines with Derivative
Information. Biometrika, 83(1):207–221, 03 1996. doi:10.1093/biomet/83.1.207.

[Pro19] Luc Pronzato. Sensitivity Analysis via Karhunen-Loève Expansion of a Random Field Model: Estimation
of Sobol' Indices and Experimental Design. Reliability Engineering and System Safety, pages 93–109, 2019.
doi:10.1016/j.ress.2018.01.010.

[RW06] Carl E. Rasmussen and Christopher K.I. Williams. Gaussian Processes for Machine Learning. The MIT
Press, 2006. doi:10.7551/mitpress/3206.001.0001.

[RGD12] Olivier Roustant, David Ginsbourger, and Yves Deville. DiceKriging, DiceOptim: Two R Packages for
the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization. Journal of
Statistical Software, pages 1–55, 2012. doi:10.18637/jss.v051.i01.

[Ste12] Michael L. Stein. Interpolation of Spatial Data. Some Theory for Kriging. Springer Series in Statistics.
Springer-Verlag, 2012. doi:10.1007/978-1-4612-1494-6.

[Wah78] Grace Wahba. Improper Priors, Spline Smoothing and the Problem of Guarding Against Model Errors in
Regression. Journal of the Royal Statistical Society: Series B, 40(3):364–372, 1978. doi:10.1111/j.2517-
6161.1978.tb01050.x.

89

https://doi.org/10.1198/016214501753382282
https://doi.org/10.1007/978-1-4419-9096-9
https://hdl.handle.net/10161/12882
https://doi.org/10.1214/18-BA1133
https://doi.org/10.1214/17-AOS1648
https://doi.org/10.1007/978-1-4419-5945-4
https://doi.org/10.1093/biomet/83.1.207
https://doi.org/10.1016/j.ress.2018.01.010
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.18637/jss.v051.i01
https://doi.org/10.1007/978-1-4612-1494-6
https://doi.org/10.1111/j.2517-6161.1978.tb01050.x
https://doi.org/10.1111/j.2517-6161.1978.tb01050.x

	Contents
	Installation
	Usage
	Basic demo
	SciKit-Learn wrapping

	API
	Contructors
	Kriging
	Description
	Usage
	Arguments
	Details
	Value
	Examples
	Results

	Kriging::update
	Description
	Usage
	Arguments
	Examples
	Results

	Kriging::copy
	Description
	Usage
	Value
	Examples
	Results

	Kriging::save & Kriging::load
	Description
	Usage
	Value
	Examples
	Results

	NuggetKriging
	Description
	Usage
	Arguments
	Details
	Value
	Examples
	Results

	NuggetKriging::update
	Description
	Usage
	Arguments
	Examples
	Results

	NuggetKriging::copy
	Description
	Usage
	Value
	Examples
	Results

	NuggetKriging::save & NuggetKriging::load
	Description
	Usage
	Value
	Examples
	Results

	NoiseKriging
	Description
	Usage
	Arguments
	Details
	Value
	Examples
	Results

	NoiseKriging::update
	Description
	Usage
	Arguments
	Examples
	Results

	NoiseKriging::copy
	Description
	Usage
	Value
	Examples
	Results

	NoiseKriging::save & NoiseKriging::load
	Description
	Usage
	Value
	Examples
	Results

	Fit objective
	Kriging::fit
	Description
	Usage
	Arguments
	Details
	Examples
	Results

	Kriging::logLikelihood
	Description
	Usage
	Details
	Value
	Examples
	Results

	Reference

	Kriging::logLikelihoodFun
	Description
	Usage
	Arguments
	Details
	Value
	Examples
	Results

	Kriging::leaveOneOut
	Description
	Usage
	Value
	Examples
	Results

	Reference

	Kriging::leaveOneOutFun
	Description
	Usage
	Arguments
	Details
	Value
	Examples
	Results

	Kriging::logMargPost
	Description
	Usage
	Details
	Value
	Examples
	Results

	Reference

	Kriging::logMargPostFun
	Description
	Usage
	Arguments
	Details
	Value
	Examples
	Results

	NuggetKriging::fit
	Description
	Usage
	Arguments
	Details
	Examples
	Results

	NuggetKriging::logLikelihood
	Description
	Usage
	Details
	Value
	Examples
	Results

	Reference

	NuggetKriging::logLikelihoodFun
	Description
	Usage
	Arguments
	Details
	Value
	Examples
	Results

	NuggetKriging::logMargPost
	Description
	Usage
	Details
	Value
	Examples
	Results

	Reference

	NuggetKriging::logMargPostFun
	Description
	Usage
	Arguments
	Details
	Value
	Examples
	Results

	NoiseKriging::fit
	Description
	Usage
	Arguments
	Details
	Examples
	Results

	NoiseKriging::logLikelihood
	Description
	Usage
	Details
	Value
	Examples
	Results

	Reference

	NoiseKriging::logLikelihoodFun
	Description
	Usage
	Arguments
	Details
	Value
	Examples
	Results

	Prediction and simulation
	Kriging::predict
	Description
	Usage
	Arguments
	Details
	Value
	Examples
	Results

	Reference

	Kriging::simulate
	Description
	Usage
	Arguments
	Details
	Value
	Examples
	Results

	Reference

	NuggetKriging::predict
	Description
	Usage
	Arguments
	Details
	Value
	Examples
	Results

	Reference

	NuggetKriging::simulate
	Description
	Usage
	Arguments
	Details
	Value
	Examples
	Results

	Reference

	NoiseKriging::predict
	Description
	Usage
	Arguments
	Details
	Value
	Examples
	Results

	Reference

	NoiseKriging::simulate
	Description
	Usage
	Arguments
	Details
	Value
	Examples
	Results

	Reference

	Models description
	Kriging models
	Components of Kriging models
	Classes of Kriging model objects
	Matrix formalism and assumptions

	Kriging steps
	Trend functions in Kriging models
	The tensor product kernel
	General form
	Available 1D correlation kernels

	Parameters
	Functional point of view
	Trend estimation
	Generalized Least Squares
	The "Kriging" case
	"NuggetKriging" and "NoiseKriging"

	The Bending Energy Matrix

	Prediction and simulation
	Framework
	The Kriging prediction
	Non-noisy cases Kriging and NuggetKriging
	Noisy case NoiseKriging

	Plugging the covariance parameters into the prediction
	Confidence interval on the Kriging mean
	Derivative w.r.t. the input

	Maximum likelihood
	General form of the likelihood
	Profile likelihood
	"Kriging"
	"NuggetKriging"
	"NoiseKriging"
	Table
	Derivatives w.r.t. the parameters

	Leave-one-out
	Bayesian marginal analysis
	Motivation and general form of prior
	Objective priors of Gu et al
	Fit: Bayesian marginal analysis
	Table of marginal likelihood functions
	Reference prior for the correlation parameters [not implemented yet]
	The “Jointly Robust” prior of Gu

	References

	Bibliography

